A Flat-File Compilation of Strong Ground-Motion Intensity Measures for Crustal Earthquakes in the Indian Region
DOI:
https://doi.org/10.26443/seismica.v4i2.1620Abstract
This study presents a uniformly processed ground‐motion flat-file for earthquakes recorded across India, comprising standardized intensity measures (IMs) and associated metadata. The primary objective is to develop a comprehensive, consistent database aligned with international practices for Ground Motion Model (GMM) development. Such standardized flat-files are essential for parametric studies, GMM derivation, and seismic hazard assessment. Thus, we compile a comprehensive dataset of ground-motion IMs, including peak ground motion parameters (acceleration (PGA), velocity (PGV), displacement (PGD)), spectral acceleration (SA), Fourier amplitude spectra (FAS), Effective Amplitude Spectrum (EAS), Arias intensity (AI), cumulative absolute velocity (CAV) significant duration (SD), Acceleration Spectrum Intensity (ASI), Velocity Spectrum Intensity (VSI), and Characteristic Intensity (Ic). These metrics are derived from approximately 778 manually processed strong-motion records from 195 earthquakes, with moment magnitudes (Mw) ≥ 2.0 and epicentral distances (REpi) < 600 km, recorded at 254 seismic stations across India between 1986 and 2018. A step-by-step waveform processing protocol was implemented to ensure consistency and accuracy. The reliability of the processed IMs was verified through residual analysis of FAS ordinates against an empirical model. This is the first study of its kind in India to provide a uniformly processed IM database, offering a valuable resource for applications in engineering seismology, seismic hazard analysis, and earthquake engineering.
References
Abrahamson, C., Shi, H. J. M., & Yang, B. (2016). Ground-motion prediction equations for Arias intensity consistent with the NGA-West2 ground-motion models (Vol. 5, p. 57) [PEER Report]. https://peer.berkeley.edu/sites/default/files/webpeer-2016-05_charlotte_abrahamson_hao-jun_michael_shi_brian_yang.pdf
Afshari, K., & Stewart, J. P. (2016). Physically Parameterized Prediction Equations for Significant Duration in Active Crustal Regions. Earthquake Spectra, 32(4), 2057–2081. https://doi.org/10.1193/063015eqs106m
Akkar, S., & Cagnan, Z. (2010). A Local Ground-Motion Predictive Model for Turkey, and Its Comparison with Other Regional and Global Ground-Motion Models. Bulletin of the Seismological Society of America, 100(6), 2978–2995. https://doi.org/10.1785/0120090367
Akkar, S., Sandıkkaya, M. A., & Bommer, J. J. (2013). Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bulletin of Earthquake Engineering, 12(1), 359–387. https://doi.org/10.1007/s10518-013-9461-4
Ancheta, T. D., Darragh, R. B., Stewart, J. P., Seyhan, E., Silva, W. J., Chiou, B. S.-J., Wooddell, K. E., Graves, R. W., Kottke, A. R., Boore, D. M., Kishida, T., & Donahue, J. L. (2014). NGA-West2 Database. Earthquake Spectra, 30(3), 989–1005. https://doi.org/10.1193/070913eqs197m
Arango, M. C., Strasser, F. O., Bommer, J. J., Boroschek, R., Comte, D., & Tavera, H. (2010). A strong-motion database from the Peru–Chile subduction zone. Journal of Seismology, 15(1), 19–41. https://doi.org/10.1007/s10950-010-9203-x
Arias, A. (1970). A measure of earthquake intensity. Seismic Design for Nuclear Power Plants (R. J. Hansen, Ed.; pp. 438–483). The MIT Press.
Atik, L. A., Abrahamson, N., Bommer, J. J., Scherbaum, F., Cotton, F., & Kuehn, N. (2010). The Variability of Ground-Motion Prediction Models and Its Components. Seismological Research Letters, 81(5), 794–801. https://doi.org/10.1785/gssrl.81.5.794
Bansal, B. K., Pandey, A. P., Singh, A. P., Suresh, G., Singh, R. K., & Gautam, J. L. (2021). National Seismological Network in India for Real-Time Earthquake Monitoring. Seismological Research Letters, 92(4), 2255–2269. https://doi.org/10.1785/0220200327
Bastías, N., & Montalva, G. A. (2016). Chile Strong Ground Motion Flatfile. Earthquake Spectra, 32(4), 2549–2566. https://doi.org/10.1193/102715eqs158dp
Bayless, J., & Abrahamson, N. A. (2019). Summary of the BA18 Ground‐Motion Model for Fourier Amplitude Spectra for Crustal Earthquakes in California. Bulletin of the Seismological Society of America, 109(5), 2088–2105. https://doi.org/10.1785/0120190077
Benjamin, J. R. (1988). A criterion for determining exceedance of the operating basis earthquake. In EPRI NP-5930.
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530
Bhandari, L. L., Fuloria, R. C., & Sastri, V. V. (1973). Stratigraphy of Assam Valley, India. AAPG Bulletin, 57(4), 642–654.
Bilham, R. (2019). Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential. Geological Society, London, Special Publications, 483(1), 423–482. https://doi.org/10.1144/sp483.16
Bindi, D., Kotha, S.-R., Weatherill, G., Lanzano, G., Luzi, L., & Cotton, F. (2018). The pan-European engineering strong motion (ESM) flatfile: consistency check via residual analysis. Bulletin of Earthquake Engineering, 17(2), 583–602. https://doi.org/10.1007/s10518-018-0466-x
Bommer, J. J., & Martínez-Pereira, A. (1999). The effective duration of earthquake strong motion. Journal of Earthquake Engineering, 3(2), 127–172. https://doi.org/10.1080/13632469909350343
Bommer, J. J., & Martínez-Pereira, A. (2000). Strong-motion parameters: definition, usefulness and predictability. Proc. of the 12th World Conference on Earthquake Engineering.
Bommer, J. J., Stafford, P. J., & Alarcon, J. E. (2009). Empirical Equations for the Prediction of the Significant, Bracketed, and Uniform Duration of Earthquake Ground Motion. Bulletin of the Seismological Society of America, 99(6), 3217–3233. https://doi.org/10.1785/0120080298
Boore, D. M. (2005). On Pads and Filters: Processing Strong-Motion Data. Bulletin of the Seismological Society of America, 95(2), 745–750. https://doi.org/10.1785/0120040160
Boore, D. M. (2010). Orientation-Independent, Nongeometric-Mean Measures of Seismic Intensity from Two Horizontal Components of Motion. Bulletin of the Seismological Society of America, 100(4), 1830–1835. https://doi.org/10.1785/0120090400
Boore, D. M., & Akkar, S. (2003). Effect of causal and acausal filters on elastic and inelastic response spectra. Earthquake Engineering & Structural Dynamics, 32(11), 1729–1748. https://doi.org/10.1002/eqe.299
Boore, D. M., & Atkinson, G. M. (2008). Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5%-Damped PSA at Spectral Periods between 0.01 s and 10.0 s. Earthquake Spectra, 24(1), 99–138. https://doi.org/10.1193/1.2830434
Boore, D. M., & Bommer, J. J. (2005a). Processing of strong-motion accelerograms: needs, options and consequences. Soil Dynamics and Earthquake Engineering, 25(2), 93–115. https://doi.org/10.1016/j.soildyn.2004.10.007
Boore, D. M., & Bommer, J. J. (2005b). Processing of strong-motion accelerograms: needs, options and consequences. Soil Dynamics and Earthquake Engineering, 25(2), 93–115. https://doi.org/10.1016/j.soildyn.2004.10.007
Bora, S. S., Cotton, F., & Scherbaum, F. (2019). NGA-West2 Empirical Fourier and Duration Models to Generate Adjustable Response Spectra. Earthquake Spectra, 35(1), 61–93. https://doi.org/10.1193/110317eqs228m
Bora, S. S., Scherbaum, F., Kuehn, N., & Stafford, P. (2013). Fourier spectral- and duration models for the generation of response spectra adjustable to different source-, propagation-, and site conditions. Bulletin of Earthquake Engineering, 12(1), 467–493. https://doi.org/10.1007/s10518-013-9482-z
Bozorgnia, Y., & Campbell, K. W. (2004). The vertical-to-horizontal response spectral ratio and tentative procedures for developing simplified V/H and vertical design spectra. Journal of Earthquake Engineering, 8(2), 175–207. https://doi.org/10.1080/13632460409350486
Campbell, K. W., & Bozorgnia, Y. (2006, September). Next generation attenuation (NGA) empirical ground motion models: can they be used in Europe. Proceedings, First European Conference on Earthquake Engineering and Seismology.
Campbell, K. W., & Bozorgnia, Y. (2010). A Ground Motion Prediction Equation for the Horizontal Component of Cumulative Absolute Velocity (CAV) Based on the PEER-NGA Strong Motion Database. Earthquake Spectra, 26(3), 635–650. https://doi.org/10.1193/1.3457158
Campbell, K. W., & Bozorgnia, Y. (2019). Ground Motion Models for the Horizontal Components of Arias Intensity (AI) and Cumulative Absolute Velocity (CAV) Using the NGA-West2 Database. Earthquake Spectra, 35(3), 1289–1310. https://doi.org/10.1193/090818eqs212m
Chiou, B. J., & Youngs, R. R. (2008). An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthquake Spectra, 24(1), 173–215. https://doi.org/10.1193/1.2894832
Chopra, A. K., & Chakrabarti, P. (1973). The Koyna Earthquake: A review of the seismicity and strong motion records. Bulletin of the Seismological Society of America, 63(2), 381–397. https://doi.org/10.1785/bssa0630020381
Converse, A., & Brady, A. G. (1992). BAP basic strong-motion accelerogram processing software version 1.0. In Open-File Report. US Geological Survey. https://doi.org/10.3133/ofr92296a
Dai, J.-C., Wang, D.-S., Chen, X.-Y., Zhang, R., & Sun, Z.-G. (2023). Evaluation of ground motion intensity measures for time-history dynamic analysis of isolated bridges. Structures, 55, 1306–1319. https://doi.org/10.1016/j.istruc.2023.06.007
Dawood, H. M., Rodriguez-Marek, A., Bayless, J., Goulet, C., & Thompson, E. (2016). A Flatfile for the KiK-net Database Processed Using an Automated Protocol. Earthquake Spectra, 32(2), 1281–1302. https://doi.org/10.1193/071214eqs106
Dobry, R., Idriss, I. M., & Ng, E. (1978). Duration characteristics of horizontal components of strong-motion earthquake records. Bulletin of the Seismological Society of America, 68(5), 1487–1520. https://doi.org/10.1785/BSSA0680051487
Douglas, J. (2003). What is a Poor Quality Strong-Motion Record? Bulletin of Earthquake Engineering, 1(1), 141–156. https://doi.org/10.1023/a:1024861528201
Douglas, J., & Boore, D. M. (2010). High-frequency filtering of strong-motion records. Bulletin of Earthquake Engineering, 9(2), 395–409. https://doi.org/10.1007/s10518-010-9208-4
Farhadi, A., & Pezeshk, S. (2020). A Referenced Empirical Ground-Motion Model for Arias Intensity and Cumulative Absolute Velocity Based on the NGA-East Database. Bulletin of the Seismological Society of America, 110(2), 508–518. https://doi.org/10.1785/0120190267
Goulet, C., Kottke, A., Boore, D., Bozorgnia, Y., Hollenback, J., Kishida, T., Der Kiureghian, A., Ktenidou, O., Kuehn, N., Rathje, E., & others. (2018). Effective amplitude spectrum (EAS) as a metric for ground motion modeling using Fourier amplitudes. 2018 Seismological Society of America Annual Meeting.
Housner, G. W. (1959). Behavior of Structures During Earthquakes. Journal of the Engineering Mechanics Division, 85(4), 109–129. https://doi.org/10.1061/jmcea3.0000102
Jain, S. K. (2016). Earthquake safety in India: achievements, challenges and opportunities. Bulletin of Earthquake Engineering, 14(5), 1337–1436. https://doi.org/10.1007/s10518-016-9870-2
Jain, S. K., & Agrawal, P. (2004). Earthquake engineering capacity building in educational sector in India. Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver, Canada.
Kalkan, E. (2016). An AutomaticP‐Phase Arrival‐Time Picker. Bulletin of the Seismological Society of America, 106(3), 971–986. https://doi.org/10.1785/0120150111
Kamiyama, M. (1984). Effects of subsoil conditions and other factors on the duration of earthquake ground shaking. Proceedings, 8th World Conference on Earthquake Engineering, San Francisco, 2, 793–800.
Kapoor, H. M., & Singh, G. (1987). Extra-peninsular Gondwana basins - stratigraphy and evolution. Journal of Palaeosciences, 36, 312–325. https://doi.org/10.54991/jop.1987.1590
Kempton, J. J., & Stewart, J. P. (2006). Prediction Equations for Significant Duration of Earthquake Ground Motions considering Site and Near-Source Effects. Earthquake Spectra, 22(4), 985–1013. https://doi.org/10.1193/1.2358175
Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228–241. https://doi.org/10.1785/bssa0880010228
Kumar, A., Mittal, H., Sachdeva, R., & Kumar, A. (2012). Indian Strong Motion Instrumentation Network. Seismological Research Letters, 83(1), 59–66. https://doi.org/10.1785/gssrl.83.1.59
Lanzano, G., Sgobba, S., Luzi, L., Puglia, R., Pacor, F., Felicetta, C., D’Amico, M., Cotton, F., & Bindi, D. (2018). The pan-European Engineering Strong Motion (ESM) flatfile: compilation criteria and data statistics. Bulletin of Earthquake Engineering, 17(2), 561–582. https://doi.org/10.1007/s10518-018-0480-z
Liao, B.-Y., Huang, H.-C., & Xie, S. (2022). The Source Characteristics of the Mw6.4, 2016 Meinong Taiwan Earthquake from Teleseismic Data Using the Hybrid Homomorphic Deconvolution Method. Applied Sciences, 12(1), 494. https://doi.org/10.3390/app12010494
Luzi, L., Puglia, R., Russo, E., D’Amico, M., Felicetta, C., Pacor, F., Lanzano, G., Çeken, U., Clinton, J., Costa, G., Duni, L., Farzanegan, E., Gueguen, P., Ionescu, C., Kalogeras, I., Özener, H., Pesaresi, D., Sleeman, R., Strollo, A., & Zare, M. (2016). The Engineering Strong‐Motion Database: A Platform to Access Pan‐European Accelerometric Data. Seismological Research Letters, 87(4), 987–997. https://doi.org/10.1785/0220150278
Mai, P. M., & Thingbaijam, K. (2014). SRCMOD: An online database of finite-fault rupture models. Seismological Research Letters, 85(6), 1348–1357.
Manea, E. F., Bora, S. S., Hutchinson, J. A., & Kaiser, A. E. (2023). Uniformly Processed Fourier Spectra Amplitude Database for Recently Compiled New Zealand Strong Ground Motions. Seismological Research Letters, 95(1), 239–252. https://doi.org/10.1785/0220230228
Meimandi-Parizi, A., Daryoushi, M., Mahdavian, A., & Saffari, H. (2020). Ground-Motion Models for the Prediction of Significant Duration Using Strong-Motion Data from Iran. Bulletin of the Seismological Society of America, 110(1), 319–330. https://doi.org/10.1785/0120190109
Mittal, H., Gupta, S., Srivastava, A., Dubey, R., & Kumar, A. (2006). National strong motion instrumentation project: an overview. 13th Symposium on Earthquake Engineering, Indian Institute of Technology, Roorkee, 18–20.
Pacor, F., Paolucci, R., Ameri, G., Massa, M., & Puglia, R. (2011). Italian strong motion records in ITACA: overview and record processing. Bulletin of Earthquake Engineering, 9(6), 1741–1759. https://doi.org/10.1007/s10518-011-9295-x
Park, Y., & Ang, A. H. ‐S. (1985). Mechanistic Seismic Damage Model for Reinforced Concrete. Journal of Structural Engineering, 111(4), 722–739. https://doi.org/10.1061/(asce)0733-9445(1985)111:4(722)
Puglia, R., Russo, E., Luzi, L., D’Amico, M., Felicetta, C., Pacor, F., & Lanzano, G. (2018). Strong-motion processing service: a tool to access and analyse earthquakes strong-motion waveforms. Bulletin of Earthquake Engineering, 16(7), 2641–2651. https://doi.org/10.1007/s10518-017-0299-z
Rao, A. S. (1984). Strong motion seismology in India. Proc. Indian Acad. Sci. (Earth Planet. Sci, 93(1), 127–139.
Rao, A. S., & Varma, C. V. J. (1981). Strong motion instrumentation in India. Proc. Indian Acad. Sci. (Earth Planet. Sci, 90(1), 127–134.
Sali, S. A. (1970). Some aspects of the Pleistocene stratigraphy of Peninsular India. Bulletin of the Deccan College Research Institute, 31(1/2), 70–80.
Scordilis, E. M. (2006). Empirical global relations converting MS and mb to moment magnitude. Journal of Seismology, 10(2), 225–236. https://doi.org/10.1007/s10950-006-9012-4
Sharma, S., Mannu, U., & Singh Bora, S. (2024). Epistemic Uncertainty in Ground‐Motion Characterization in the Indian Context: Evaluation of Ground‐Motion Models (GMMs) for the Himalayan Region. Seismological Research Letters, 95(3), 1718–1734. https://doi.org/10.1785/0220230157
Shigefuji, M., Takai, N., Bijukchhen, S., Ichiyanagi, M., Rajaure, S., Dhital, M. R., Paudel, L. P., & Sasatani, T. (2022). Strong ground motion data of the 2015 Gorkha Nepal earthquake sequence in the Kathmandu Valley. Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01634-6
Sriwastav, R. K., Yedulla, J., & Raghukanth, S. T. G. (2024). A non-parametric model of ground motion parameters for shallow crustal earthquakes in Europe. Soil Dynamics and Earthquake Engineering, 186, 108923. 10.1016/j.soildyn.2024.108923
Stafford, P. J., Berrill, J. B., & Pettinga, J. R. (2008). New predictive equations for Arias intensity from crustal earthquakes in New Zealand. Journal of Seismology, 13(1), 31–52. https://doi.org/10.1007/s10950-008-9114-2
Takai, N., Shigefuji, M., Rajaure, S., Bijukchhen, S., Ichiyanagi, M., Dhital, M. R., & Sasatani, T. (2016). Strong ground motion in the Kathmandu Valley during the 2015 Gorkha, Nepal, earthquake. Earth, Planets and Space, 68(1). https://doi.org/10.1186/s40623-016-0383-7
Tandon, A. N., & Choudhury, D. C. (1968). The Koyna earthquake of December 11, 1967: Some seismological and geological aspects. Indian Journal of Meteorology and Geophysics, 19(4), 431–439.
Tian, D., Leong, W. J., Fröhlich, Y., Grund, M., Schlitzer, W., Jones, M., Toney, L., Yao, J., Tong, J.-H., Magen, Y., Materna, K., Belem, A., Newton, T., Anant, A., Ziebarth, M., Quinn, J., Uieda, L., & Wessel, P. (2025). PyGMT: A Python interface for the Generic Mapping Tools (0.17.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.17156962
Trifunac, M. D., & Brady, A. G. (1975). A study on the duration of strong earthquake ground motion. Bulletin of the Seismological Society of America, 65(3), 581–626. https://doi.org/10.1785/BSSA0650030581
Von Thun, J. L. (1988). Earthquake ground motions for design and analysis of dams. In Earthquake engineering and soil dynamics II-recent advances in ground-motion evaluation. ASCE.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Shikha Sharma, Utsav Mannu, Sanjay Singh Bora

This work is licensed under a Creative Commons Attribution 4.0 International License.

