The 28 January 2020, Mw7.7, Cayman Trough / Oriente Fault, Supershear Earthquake Rupture

Authors

  • Eric Calais Université PSL, École Normale Supérieure, CNRS UMR 8538, Paris, France https://orcid.org/0000-0002-5935-8117
  • Bertrand Delouis Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, IRD,Géoazur, Valbonne, France
  • Jean-Paul Ampuero Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, IRD,Géoazur, Valbonne, France https://orcid.org/0000-0002-4827-7987
  • Han Bao Department of Earth, Planetary and Space Sciences,University of California, Los Angeles, CA, USA
  • Françoise Courboulex Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, IRD,Géoazur, Valbonne, France https://orcid.org/0000-0002-4467-9102
  • Anne Deschamps Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, IRD,Géoazur, Valbonne, France https://orcid.org/0000-0002-6209-9814
  • Bernard de Lépinay Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, IRD,Géoazur, Valbonne, France
  • Tony Monfret Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, IRD,Géoazur, Valbonne, France | Barcelona Center for Subsurface Imaging, Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain https://orcid.org/0000-0002-4521-0357
  • Lingsen Meng Department of Earth, Planetary and Space Sciences,University of California, Los Angeles, CA, USA https://orcid.org/0000-0003-2428-0548
  • Liuwei Xu Department of Earth, Planetary and Space Sciences,University of California, Los Angeles, CA, USA https://orcid.org/0000-0001-8881-5834
  • Charles DeMets Department ofGeoscience, University of Wisconsin, Madison, USA https://orcid.org/0000-0001-7460-1165
  • O'Leary Gonzalez Centro Nacional de Investigaciones Sismológicas (CENAIS), Santiago de Cuba, Cuba https://orcid.org/0000-0003-0810-3656
  • Enrique Arango-Arias Centro Nacional de Investigaciones Sismológicas (CENAIS), Santiago de Cuba, Cuba
  • Bladimir Moreno Centro Nacional de Investigaciones Sismológicas (CENAIS), Santiago de Cuba, Cuba https://orcid.org/0000-0002-7830-5184
  • Raul Palau Centro Nacional de Investigaciones Sismológicas (CENAIS), Santiago de Cuba, Cuba
  • Manuel Cutie Centro Nacional de Investigaciones Sismológicas (CENAIS), Santiago de Cuba, Cuba https://orcid.org/0000-0001-7909-8925
  • Eduardo Diez Centro Nacional de Investigaciones Sismológicas (CENAIS), Santiago de Cuba, Cuba https://orcid.org/0000-0002-1323-8451
  • Ernesto Roche Grupo Empresarial GEOCUBA, Havana, Cuba
  • Jorge Garcia Grupo Empresarial GEOCUBA, Havana, Cuba https://orcid.org/0009-0007-5582-6511
  • Enrique Castellanos Ministerio de Energía y Minas (MINEM), Havana, Cuba https://orcid.org/0000-0003-2066-7681
  • Steeve Symithe Université d’État d’Haïti, Faculté desSciences, Unité de Recherche en Géosciences, Port-au-Prince, Haïti
  • Paul Williams Earthquake Unit of the University of West Indies Mona Campus, Jamaica

DOI:

https://doi.org/10.26443/seismica.v4i2.1629

Abstract

The largest magnitude strike-slip event of the instrumental seismology era along the northern Caribbean plate boundary, with a moment magnitude of 7.7, occurred on 28 January 2020 on the Oriente transform fault, along the northern edge of the Cayman Trough, west of Cuba. We use local, regional, and global seismic waveforms and coseismic geodetic offsets, to produce high-resolution rupture models for both the low-frequency (~ 0.02 Hz) and high-frequency (~ 1 Hz) components of the rupture using a finite fault kinematic inversion and back-projection imaging, respectively. We document a rupture that propagated predominantly unilaterally westward, with an initial phase at subshear speed for 20–-30~s and over 40 to 50~km, followed by an acceleration to supershear speed that persisted all the way to the western end of the rupture, for 40~s and over about 200~km. Supershear rupture speed is consistent with strong motion observations of low ground acceleration levels in the near-field of the fault and low aftershock production in numbers and moment release. The rupture followed a very linear, unsegmented portion of the Oriente fault that had not experienced significant seismic activity for at least a century. Observational evidence and models indicate that the 28 January 2020, Mw7.7 earthquake, supershear over most of its length, had a smooth rupture process along a simple linear fault segment where earthquake nucleation is infrequent and interseismic locking depth shallow, two characteristics that may explain this unusually large magnitude supershear event.

References

Aagaard, B. T., & Heaton, T. H. (2004). Near-Source Ground Motions from Simulations of Sustained Intersonic and Supersonic Fault Ruptures. Bulletin of the Seismological Society of America, 94(6), 2064–2078. https://doi.org/10.1785/0120030249

Aki, K. (1965). Maximum likelihood estimate of b in the formula log N= a-bM and its confidence limits. Bulletin of the Earthquake Research Institute, 43, 237–239.

Amlani, F., Bhat, H. S., Simons, W. J. F., Schubnel, A., Vigny, C., Rosakis, A. J., Efendi, J., Elbanna, A. E., Dubernet, P., & Abidin, H. Z. (2022). Supershear shock front contribution to the tsunami from the 2018 Mw 7.5 Palu, Indonesia earthquake. Geophysical Journal International, 230(3), 2089–2097. https://doi.org/10.1093/gji/ggac162

Andrews, D. J., & Ben-Zion, Y. (1997). Wrinkle-like slip pulse on a fault between different materials. Journal of Geophysical Research: Solid Earth, 102(B1), 553–571. https://doi.org/10.1029/96jb02856

Bao, H., Ampuero, J.-P., Meng, L., Fielding, E. J., Liang, C., Milliner, C. W. D., Feng, T., & Huang, H. (2019). Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake. Nature Geoscience, 12(3), 200–205. https://doi.org/10.1038/s41561-018-0297-z

Bao, H., Xu, L., Meng, L., Ampuero, J.-P., Gao, L., & Zhang, H. (2022). Global frequency of oceanic and continental supershear earthquakes. Nature Geoscience, 15(11), 942–949. https://doi.org/10.1038/s41561-022-01055-5

Benford, B., DeMets, C., & Calais, E. (2012). GPS estimates of microplate motions, northern Caribbean: evidence for a Hispaniola microplate and implications for earthquake hazard. Geophysical Journal International, 191(2), 481–490. https://doi.org/10.1111/j.1365-246x.2012.05662.x

Bletery, Q., Sladen, A., Delouis, B., Vallée, M., Nocquet, J.-M., Rolland, L., & Jiang, J. (2014). A detailed source model for the Mw9.0 Tohoku-Oki earthquake reconciling geodesy, seismology, and tsunami records. Journal of Geophysical Research: Solid Earth, 119(10), 7636–7653. https://doi.org/10.1002/2014jb011261

Bouchon, M. (1981). A simple method to calculate Green’s functions for elastic layered media. Bulletin of the Seismological Society of America, 71(4), 959–971. https://doi.org/10.1785/bssa0710040959

Bouchon, M., Bouin, M.-P., Karabulut, H., Toksöz, M. N., Dietrich, M., & Rosakis, A. J. (2001). How fast is rupture during an earthquake? New insights from the 1999 Turkey Earthquakes. Geophysical Research Letters, 28(14), 2723–2726. https://doi.org/10.1029/2001gl013112

Bouchon, M., & Karabulut, H. (2008). The Aftershock Signature of Supershear Earthquakes. Science, 320(5881), 1323–1325. https://doi.org/10.1126/science.1155030

Bouchon, M., Karabulut, H., Bouin, M.-P., Schmittbuhl, J., Vallée, M., Archuleta, R., Das, S., Renard, F., & Marsan, D. (2010). Faulting characteristics of supershear earthquakes. Tectonophysics, 493(3–4), 244–253. https://doi.org/10.1016/j.tecto.2010.06.011

Bouchon, M., & Rosakis, A. J. (2002). Reply to comment on “How fast is rupture during an earthquake? New insights from the 1999 Turkey earthquakes.” Geophysical Research Letters, 29(8), 84-1-84–2. https://doi.org/10.1029/2002gl015096

Bowin, C. O. (1968). Geophysical study of the Cayman Trough. Journal of Geophysical Research, 73(16), 5159–5173. https://doi.org/10.1029/jb073i016p05159

Braun, J. J., Mattioli, G. S., Calais, E., Carlson, D., Dixon, T. H., Jackson, M. E., Kursinski, E. R., Mora-Paez, H., Miller, M. M., Pandya, R., Robertson, R., & Wang, G. (2012). Focused study of interweaving hazards across the Caribbean. Eos, Transactions American Geophysical Union, 93(9), 89–90. https://doi.org/10.1029/2012eo090001

Burke, K. (1988). Tectonic Evolution of the Caribbean. Annual Review of Earth and Planetary Sciences, 16(1), 201–230. https://doi.org/10.1146/annurev.ea.16.050188.001221

Calais, E., Gonzalez, O. F., Arango-Arias, E. D., Moreno, B., Palau, R., Cutie, M., Diez, E., Montenegro, C., Roche, E. R., Garcia, J., Castellanos, E., & Symithe, S. (2023). Current deformation along the northern Caribbean plate boundary from GNSS measurements in Cuba. Tectonophysics, 868, 230068. https://doi.org/10.1016/j.tecto.2023.230068

Calais, Eric, & de Lépinay, B. (1991). From transtension to transpression along the northern Caribbean plate boundary off Cuba: implications for the Recent motion of the Caribbean plate. Tectonophysics, 186(3–4), 329–350. https://doi.org/10.1016/0040-1951(91)90367-2

Calais, Eric, Perrot, J., & de Lépinay, B. (1998). Strike-slip tectonics and seismicity along the northern Caribbean plate boundary from Cuba to Hispaniola. In Special Paper 326: Active Strike-Slip and Collisional Tectonics of the Northern Caribbean Plate Boundary Zone (Vol. 326, pp. 125–169). Geological Society of America. https://doi.org/10.1130/0-8137-2326-4.125

Cheng, C., & Wang, D. (2020). Imaging the rupture process of the 10 January 2018 MW7.5 Swan island, Honduras earthquake. Earthquake Science, 33(4), 194–200. https://doi.org/10.29382/eqs-2020-0194-03

Delouis, B., Giardini, D., Lundgren, P., & Salichon, J. (2002). Joint Inversion of InSAR, GPS, Teleseismic, and Strong-Motion Data for the Spatial and Temporal Distribution of Earthquake Slip: Application to the 1999 Izmit Mainshock. Bulletin of the Seismological Society of America, 92(1), 278–299. https://doi.org/10.1785/0120000806

deMets, C., Jansma, P. E., Mattioli, G. S., Dixon, T. H., Farina, F., Bilham, R., Calais, E., & Mann, P. (2000). GPS constraints on Caribbean-North America plate motion. Geophysical Research Letters, 27(3), 437–440. https://doi.org/10.1029/1999GL005436

Dunham, E. M. (2007). Conditions governing the occurrence of supershear ruptures under slip-weakening friction. Journal of Geophysical Research: Solid Earth, 112(B7), 2006JB004717. https://doi.org/10.1029/2006JB004717

Dunham, E. M., & Archuleta, R. J. (2004). Evidence for a Supershear Transient during the 2002 Denali Fault Earthquake. Bulletin of the Seismological Society of America, 94(6B), S256–S268. https://doi.org/10.1785/0120040616

El-Isa, Z. H., & Eaton, D. W. (2014). Spatiotemporal variations in the b-value of earthquake magnitude–frequency distributions: Classification and causes. Tectonophysics, 615–616, 1–11. https://doi.org/10.1016/j.tecto.2013.12.001

Ellis, A., deMets, C., Briole, P., Cosenza, B., Flores, O., Graham, S. E., Guzmán-Speziale, M., Hernández, D., Kostoglodov, V., LaFemina, P., Lord, N., Lasserre, C., Lyon-Caen, H., Rodriguez Maradiaga, M., McCaffrey, R., Molina, E., Rivera, J., Rogers, R., & Staller, A. (2018). GPS constraints on deformation in northern Central America from 1999 to 2017, Part 1 – Time-dependent modelling of large regional earthquakes and their post-seismic effects. Geophysical Journal International, 214(3), 2177–2194. https://doi.org/10.1093/gji/ggy249

Ellsworth, W. L., Celebi, M., Evans, J. R., Jensen, E. G., Kayen, R., Metz, M. C., Nyman, D. J., Roddick, J. W., Spudich, P., & Stephens, C. D. (2004). Near-Field Ground Motion of the 2002 Denali Fault, Alaska, Earthquake Recorded at Pump Station 10. Earthquake Spectra, 20(3), 597–615. https://doi.org/10.1193/1.1778172

GEBCO. (2024). Gridded Bathymetry Data. https://www.gebco.net/data%5C_and%5C_products/gridded%5C_bathymetry%5C_data/ GEOSCOPE. (2021). CUBA REGION 2020/01/28 19:10:25 UTC, Mw=7.8. http://geoscope.ipgp.fr/index.php/en/catalog/earthquake-description?seis=us60007idc

Graham, S. E., DeMets, C., DeShon, H. R., Rogers, R., Maradiaga, M. R., Strauch, W., Wiese, K., & Hernandez, D. (2012). GPS and seismic constraints on the M = 7.3 2009 Swan Islands earthquake: implications for stress changes along the Motagua fault and other nearby faults. Geophysical Journal International, 190(3), 1625–1639. https://doi.org/10.1111/j.1365-246x.2012.05560.x

Hayman, N. W., Grindlay, N. R., Perfit, M. R., Mann, P., Leroy, S., & de Lépinay, B. (2011). Oceanic core complex development at the ultraslow spreading Mid-Cayman Spreading Center. Geochemistry, Geophysics, Geosystems, 12(3). https://doi.org/10.1029/2010gc003240

Herring, T. A., King, R. W., Floyd, M., & McClusky, S. C. (2015). Introduction to GAMIT/GLOBK, Release 10.6 (pp. 1–50) [Techreport]. Massachusetts Institute of Technology. Holcombe, T. L., & Sharman, G. F. (1983). Post-Miocene Cayman Trough evolution: A speculative model. Geology, 11(12), 714–717. https://doi.org/10.1130/0091-7613(1983)11<714:pcteas>2.0.co;2

Hough, S. E., Martin, S. S., Symithe, S. J., & Briggs, R. (2023). Rupture Scenarios for the 3 June 1770 Haiti Earthquake. Bulletin of the Seismological Society of America, 113(1), 157–185. https://doi.org/10.1785/0120220108

Jara, J., Bruhat, L., Thomas, M. Y., Antoine, S. L., Okubo, K., Rougier, E., Rosakis, A. J., Sammis, C. G., Klinger, Y., Jolivet, R., & Bhat, H. S. (2021). Signature of transition to supershear rupture speed in the coseismic off-fault damage zone. Proceedings of the Royal Society A, 477(2255), 20210364. https://doi.org/10.1098/rspa.2021.0364

Johnston, G., Riddell, A., & Hausler, G. (2017). The International GNSS Service. In P. Teunissen & O. Montenbruck (Eds.), Springer Handbook of Global Navigation Satellite Systems. Lapusta, N., & Liu, Y. (2009). Three-dimensional boundary integral modeling of spontaneous earthquake sequences and aseismic slip. Journal of Geophysical Research: Solid Earth, 114(B9), 2008JB005934. https://doi.org/10.1029/2008JB005934

Lay, T., Kanamori, H., Ammon, C. J., Koper, K. D., Hutko, A. R., Ye, L., Yue, H., & Rushing, T. M. (2012). Depth-varying rupture properties of subduction zone megathrust faults. Journal of Geophysical Research: Solid Earth, 117(B4). https://doi.org/10.1029/2011JB009133

Leroy, S., Mauffret, A., Patriat, P., & de Lépinay, B. (2000). An alternative interpretation of the Cayman trough evolution from a reidentification of magnetic anomalies. Geophysical Journal International, 141(3), 539–557. https://doi.org/10.1046/j.1365-246x.2000.00059.x

Leroy, Sylvie, de Lépinay, B., Mauffret, A., & Pubellier, M. (1996). Structural and Tectonic Evolution of the Eastern Cayman Trough (Caribbean Sea) From Seismic Reflection Data. American Association of Petroleum Geologists Bulletin, 80(2), 222–247. https://doi.org/10.1306/64ed8796-1724-11d7-8645000102c1865d

Mann, P., & Burke, K. (1984). Neotectonics of the Caribbean. Reviews of Geophysics, 22(4), 309–362. https://doi.org/10.1029/rg022i004p00309

Mello, M., Bhat, H. S., Rosakis, A. J., & Kanamori, H. (2014). Reproducing the supershear portion of the 2002 Denali earthquake rupture in laboratory. Earth and Planetary Science Letters, 387, 89–96. https://doi.org/10.1016/j.epsl.2013.11.030

Meng, L, Ampuero, J. P., Sladen, A., & Rendon, H. (2012). High-resolution backprojection at regional distance: Application to the Haiti M7.0 earthquake and comparisons with finite source studies. Journal of Geophysical Research: Solid Earth, 117(B4), B04313-16. https://doi.org/10.1029/2011jb008702

Meng, Lingsen, Inbal, A., & Ampuero, J.-P. (2011). A window into the complexity of the dynamic rupture of the 2011 Mw 9 Tohoku-Oki earthquake: THE 2011 TOHOKU-OKI EARTHQUAKE. Geophysical Research Letters, 38(7), n/a-n/a. https://doi.org/10.1029/2011GL048118

Meng, Lingsen, Zhang, A., & Yagi, Y. (2016). Improving back projection imaging with a novel physics-based aftershock calibration approach: A case study of the 2015 Gorkha earthquake. Geophysical Research Letters, 43(2), 628–636. https://doi.org/10.1002/2015gl067034

Moreno, B, Grandison, M., & Atakan, K. (2002). Crustal velocity model along the southern Cuban margin: implications for the tectonic regime at an active plate boundary. Geophysical Journal International, 151, 632–645. https://doi.org/10.1046/j.1365-246X.2002.01810.x

Moreno, Bladimir, Aoudia, A., Manu-Marfo, D., Kherchouche, R., & Pachhai, S. (2023). Crust–Uppermost Mantle Structure beneath the Caribbean Region from Seismic Ambient Noise Tomography. Bulletin of the Seismological Society of America, 113(3), 1064–1076. https://doi.org/10.1785/0120220062

Nabelek, J. (1984). Determination of earthquake fault parameters from inversion of body waves [Phdthesis]. PhD Thesis, M.I.T., Cambridge, Massachusetts, 361 pp. Peirce, C., Grevemeyer, I., Hayman, N. W., & Van Avendonk, H. J. A. (2022). Active ocean–continent transform margins: seismic investigation of the Cayman Trough-Swan Island ridge-transform intersection. Geophysical Journal International, 229(3), 1604–1627. https://doi.org/10.1093/gji/ggac019

Perfit, M. R., & Heezen, B. C. (1978). The geology and evolution of the Cayman Trench. Geological Society of America Bulletin, 89(8), 1155–21. https://doi.org/10.1130/0016-7606(1978)89<1155:tgaeot>2.0.co;2

Perrot, J., Calais, E., & de Lépinay, B. (1997). Tectonic and Kinematic Regime along the Northern Caribbean Plate Boundary: New Insights from Broad-band Modeling of the May 25, 1992, Ms = 6.9 Cabo Cruz, Cuba, Earthquake. Pure and Applied Geophysics, 149(3), 475–487. https://doi.org/10.1007/s000240050036

Plafker, G. (1976). Tectonic Aspects of the Guatemala Earthquake of 1976 February 1976. Science, 193(4259), 1201–1208. https://doi.org/10.1126/science.193.4259.1201 Rosencrantz, E., & Mann, P. (1991). SeaMARC II mapping of transform faults in the Cayman Trough, Caribbean Sea. Geology, 19(7), 690–693. https://doi.org/10.1130/0091-7613(1991)019<0690:simotf>2.3.co;2

Rosencrantz, E., Ross, M. I., & Sclater, J. G. (1988). Age and spreading history of the Cayman Trough as determined from depth, heat flow, and magnetic anomalies. Journal of Geophysical Research: Solid Earth, 93(B3), 2141–2157. https://doi.org/10.1029/jb093ib03p02141

Rousseau, C.-E., & Rosakis, A. J. (2009). Dynamic path selection along branched faults: Experiments involving sub-Rayleigh and supershear ruptures. Journal of Geophysical Research: Solid Earth, 114(B8). https://doi.org/10.1029/2008jb006173 Scholz, C H. (1968). The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58(1), 399–415. https://doi.org/10.1785/bssa0580010399 Scholz,

Christopher H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399–1402. https://doi.org/10.1002/2014gl062863

Schorlemmer, D., Wiemer, S., & Wyss, M. (2005). Variations in earthquake-size distribution across different stress regimes. Nature, 437(7058), 539–542. https://doi.org/10.1038/nature04094

Shi, Z., & Ben-Zion, Y. (2006). Dynamic rupture on a bimaterial interface governed by slip-weakening friction. Geophysical Journal International, 165(2), 469–484. https://doi.org/10.1111/j.1365-246x.2006.02853.x

Shlomai, H., Adda-Bedia, M., Arias, R. E., & Fineberg, J. (2020). Supershear Frictional Ruptures Along Bimaterial Interfaces. Journal of Geophysical Research: Solid Earth, 125(8), e2020JB019829. https://doi.org/10.1029/2020JB019829

Shlomai, Hadar, & Fineberg, J. (2016). The structure of slip-pulses and supershear ruptures driving slip in bimaterial friction. Nature Communications, 7(1), 11787. https://doi.org/10.1038/ncomms11787

Sylvester, A. G. (1988). Strike-slip faults. GSA Bulletin, 100(11), 1666–1703. https://doi.org/10.1130/0016-7606(1988)100<1666:ssf>2.3.co;2

Symithe, S., Calais, E., Chabalier, J. B., Robertson, R., & Higgins, M. (2015). Current block motions and strain accumulation on active faults in the Caribbean. Journal of Geophysical Research (Solid Earth), 120. https://doi.org/10.1002/2014jb011779

Taber, S. (1922). The Great Fault Troughs of the Antilles. The Journal of Geology, 30(2), 89–114. https://doi.org/10.1086/622856;journal:journal:jg;subpage:string:access

Tadapansawut, T., Okuwaki, R., Yagi, Y., & Yamashita, S. (2020). Rupture Process of the 2020 Caribbean Earthquake Along the Oriente Transform Fault, Involving Supershear Rupture and Geometric Complexity of Fault. Geophysical Research Letters, 48(1). https://doi.org/10.1029/2020gl090899

Templeton, E. L., Baudet, A., Bhat, H. S., Dmowska, R., Rice, J. R., Rosakis, A. J., & Rousseau, C.-E. (2009). Finite element simulations of dynamic shear rupture experiments and dynamic path selection along kinked and branched faults. Journal of Geophysical Research: Solid Earth, 114(B8). https://doi.org/10.1029/2008jb006174

tenBrink, U. S., Bakun, W. H., & Flores, C. H. (2011). Historical perspective on seismic hazard to Hispaniola and the northeast Caribbean region. Journal of Geophysical Research: Solid Earth, 116(B12), B12318-15. https://doi.org/10.1029/2011jb008497

tenBrink, U. S., Coleman, D. F., & Dillon, W. P. (2002). The nature of the crust under Cayman Trough from gravity. Marine and Petroleum Geology, 19(8), 971–987. https://doi.org/10.1016/s0264-8172(02)00132-0

USGS. (2020). M 7.7 - 123 km NNW of Lucea, Jamaica. https://earthquake.usgs.gov/earthquakes/eventpage/us60007idc/executive

USGS. (2025). M 7.6 - 209 km SSW of George Town, Cayman Islands. https://earthquake.usgs.gov/earthquakes/eventpage/us7000pcdl/executive

Utsu, T. (1965). A method for determining the value of b in the formula log n = a - bM showing the magnitude-frequency relation for earth- quakes. Geophysical Bulletin of the Hokkaido University, 13, 99–103.

vanDusen, S. R., & Doser, D. I. (2000). Faulting Processes of Historic (1917–1962) M>6.0 Earthquakes Along the North-central Caribbean Margin. Pure and Applied Geophysics, 157(5), 719–736. https://doi.org/10.1007/pl00001115

Vernant, P. (2015). What can we learn from 20 years of interseismic GPS measurements across strike-slip faults? Tectonophysics, 644–645(C), 22–39. https://doi.org/10.1016/j.tecto.2015.01.013

Waldhauser, F. (2001). HypoDD-A program to compute double-difference hypocenter locations. [Techreport]. Weertman, J. (2002). Subsonic type earthquake dislocation moving at approximately sqrt(2) x shear wave velocity on interface between half spaces of slightly different elastic constants. Geophysical Research Letters, 29(10), 109-1–4. https://doi.org/10.1029/2001GL013916

Weng, H., & Ampuero, J.-P. (2020). Continuum of earthquake rupture speeds enabled by oblique slip. Nature Geoscience, 13(12), 817–821. https://doi.org/10.1038/s41561-020-00654-4

Weng, H., Huang, J., & Yang, H. (2015). Barrier-induced supershear ruptures on a slip-weakening fault. Geophysical Research Letters, 42(12), 4824–4832. https://doi.org/10.1002/2015GL064281

Wilcox, R. E., Harding, T. P., & Seely, D. R. (1973). Basic Wrench Tectonics. AAPG Bulletin, 57(1), 74–96. https://doi.org/10.1306/819a424a-16c5-11d7-8645000102c1865d

Xu, Z., Sun, L., Rahman, M. N. A., Liang, S., Shi, J., & Li, H. (2022). Insights on the Small Tsunami from 28 January 2020 Caribbean Sea MW7.7 Earthquake by Numerical Simulation and Spectral Analysis. Natural Hazards, 111, 2703–2719. https://doi.org/10.21203/rs.3.rs-608879/v1

Zumberge, J., Heflin, M. B., Watkins, M. M., & Webb, F. H. (2007). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research (Solid Earth), 102(B3), 5005–5017. https://doi.org/10.1029/96JB03860

Downloads

Published

2025-08-31

How to Cite

Calais, E., Delouis, B., Ampuero, J.-P., Bao, H., Courboulex, F., Deschamps, A., de Lépinay, B., Monfret, T., Meng, L., Xu, L., DeMets, C., Gonzalez, O., Arango-Arias, E., Moreno, B., Palau, R., Cutie, M., Diez, E., Roche, E., Garcia, J., Castellanos, E., Symithe, S., & Williams, P. (2025). The 28 January 2020, Mw7.7, Cayman Trough / Oriente Fault, Supershear Earthquake Rupture. Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.1629

Issue

Section

Articles