Impact of Seismic Attenuation Corrections on Source Parameter Estimation

Authors

  • Dino Bindi GFZ Potsdam
  • Matteo Picozzi Istituto Nazionale di Oceanografia e di Geofisica Sperimentale OGS
  • Adrien Oth European Center for Geodynamics and Seismology
  • Daniele Spallarossa University of Genova DIPTERIS

DOI:

https://doi.org/10.26443/seismica.v4i2.1651

Keywords:

Seismology, Earthquake sources, 2019 Ridgecrest sequence, earthquake stress drop, spectral decomposition, source-attenuation trade off

Abstract

We estimate the stress drop ∆σ for 551 earthquakes from the 2019 Ridgecrest sequence in Southern California using a spectral decomposition. To assess the impact of propagation model assumptions, we apply a 2D cell-based approach that accounts for lateral attenuation variations and compare results with previous models using distance and depth-dependent attenuation. The 95% confidence interval for azimuthal-dependent attenuation over an 80 km radius is 0.290 at 2 Hz and 0.473 at 14 Hz (log10 units). While the 2D model reveals significant azimuthal variations, the overall ∆σ distribution remains similar to that from a simple distance-dependent model, at least for the analyzed data set. High ∆σ is observed near the M7.1 and M6.4 events, while lower values appear at shallower depths, especially toward the Coso region and near the left-lateral fault junction of the M6.4 sequence. All models consistently identify a high-∆σ region at 4-8 km depth between stations CLC and WRC2, north of the M7.1 hypocenter, where the main fault bends. While spatial comparisons reveal more localized differences, the most pronounced impact arises when the attenuation model incorporates depth dependence.

References

Abercrombie, R. E., & Rice, J. R. (2005). Can observations of earthquake scaling constrain slip weakening? Geophysical Journal International, 162(2), 406–424. https://doi.org/https://doi.org/10.1111/j.1365-246X.2005.02579.x DOI: https://doi.org/10.1111/j.1365-246X.2005.02579.x

Abercrombie, R. E., Trugman, D. T., Shearer, P. M., Chen, X., Zhang, J., Pennington, C. N., Hardebeck, J. L., Goebel, T. H. W., & Ruhl, C. J. (2021). Does Earthquake Stress Drop Increase With Depth in the Crust? Journal of Geophysical Research: Solid Earth, 126(10), e2021JB022314. https://doi.org/https://doi.org/10.1029/2021JB022314 DOI: https://doi.org/10.1029/2021JB022314

Albuquerque Seismological Laboratory (ASL)/USGS. (1980). US Geological Survey Networks [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/GS

Andrews, D. J. (1986). Objective Determination of Source Parameters and Similarity of Earthquakes of Different Size. In Earthquake Source Mechanics (pp. 259–267). American Geophysical Union (AGU). https://doi.org/https://doi.org/10.1029/GM037p0259 DOI: https://doi.org/10.1029/GM037p0259

Baltay, A., Abercrombie, R., Chu, S., & Taira, T. (2024). The SCEC/USGS Community Stress Drop Validation Study Using the 2019 Ridgecrest Earthquake Sequence. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1009 DOI: https://doi.org/10.26443/seismica.v3i1.1009

Baltay, A. S., Hanks, T. C., & Beroza, G. C. (2013). Stable Stress‐Drop Measurements and their Variability: Implications for Ground‐Motion Prediction. Bulletin of the Seismological Society of America, 103(1), 211–222. https://doi.org/10.1785/0120120161 DOI: https://doi.org/10.1785/0120120161

Bindi, D., Razafindrakoto, H. N. T., Picozzi, M., & Oth, A. (2021). Stress Drop Derived from Spectral Analysis Considering the Hypocentral Depth in the Attenuation Model: Application to the Ridgecrest Region, California. Bulletin of the Seismological Society of America, 111(6), 3175–3188. https://doi.org/10.1785/0120210039 DOI: https://doi.org/10.1785/0120210039

Bindi, D., Spallarossa, D., Picozzi, M., Oth, A., Morasca, P., & Mayeda, K. (2023a). The community stress-drop validation study—Part I: Source, propagation, and site decomposition of Fourier spectra. Seismological Society of America, 94(4), 1980–1991. DOI: https://doi.org/10.1785/0220230019

Bindi, D., Spallarossa, D., Picozzi, M., Oth, A., Morasca, P., & Mayeda, K. (2023b). The community stress-drop validation study—part II: Uncertainties of the source parameters and stress drop analysis. Seismological Society of America, 94(4), 1992–2002. DOI: https://doi.org/10.1785/0220230020

Bindi, D., Zaccarelli, R., Cotton, F., Weatherill, G., & Reddy Kotha, S. (2023). Source Scaling and Ground‐Motion Variability along the East Anatolian Fault. The Seismic Record, 3(4), 311–321. https://doi.org/10.1785/0320230034 DOI: https://doi.org/10.1785/0320230034

Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research (1896-1977), 75(26), 4997–5009. https://doi.org/https://doi.org/10.1029/JB075i026p04997 DOI: https://doi.org/10.1029/JB075i026p04997

California Institute of Technology and United States Geological Survey Pasadena. (1926). Southern California Seismic Network [Data set]. International Federation of Digital Seismograph Networks. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/CI

Campbell, K. W., & Boore, D. M. (2016). Evaluation of Six NEHRP B/C Crustal Amplification Models Proposed for Use in Western North America. Bulletin of the Seismological Society of America, 106(2), 673–686. https://doi.org/10.1785/0120150242 DOI: https://doi.org/10.1785/0120150242

Castro, R. R., Anderson, J. G., & Singh, S. K. (1990). Site response, attenuation and source spectra of S waves along the Guerrero, Mexico, subduction zone. Bulletin of the Seismological Society of America, 80(6A), 1481–1503. https://doi.org/10.1785/BSSA08006A1481

Chen, K., Chen, X., Wang, Y., & Li, X. (2024). Source Scaling, Spatially Variable Path Attenuation, and Site‐Effect Parameters via a Generalized Inversion Technique for Strong‐Motion Data from Sichuan, China. Bulletin of the Seismological Society of America, 114(5), 2504–2523. https://doi.org/10.1785/0120230268 DOI: https://doi.org/10.1785/0120230268

Chen, X., Wu, Q., & Pennington, C. (2025). Factors That Influence Variability in Stress‐Drop Measurements Using Spectral Decomposition and Spectral‐Ratio Methods for the 2019 Ridgecrest Earthquake Sequence. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120240150 DOI: https://doi.org/10.1785/0120240150

De Gori, P., Pio Lucente, F., & Chiarabba, C. (2023). Source‐Parameter Estimation after Attenuation Correction through the Use of Q Tomography. Bulletin of the Seismological Society of America, 113(4), 1739–1758. https://doi.org/10.1785/0120220196 DOI: https://doi.org/10.1785/0120220196

Edwards, B., Rietbrock, A., Bommer, J. J., & Baptie, B. (2008). The Acquisition of Source, Path, and Site Effects from Microearthquake Recordings Using Q Tomography: Application to the United Kingdom. Bulletin of the Seismological Society of America, 98(4), 1915–1935. https://doi.org/10.1785/0120070127 DOI: https://doi.org/10.1785/0120070127

Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 241(1226), 376–396. https://doi.org/10.1098/rspa.1957.0133 DOI: https://doi.org/10.1098/rspa.1957.0133

Evans, W. S., Plesch, A., Shaw, J. H., Pillai, N. L., Yu, E., Meier, M., & Hauksson, E. (2020). A Statistical Method for Associating Earthquakes with Their Source Faults in Southern California. Bulletin of the Seismological Society of America, 110(1), 213–225. https://doi.org/10.1785/0120190115 DOI: https://doi.org/10.1785/0120190115

Garnier, Simon, Ross, Noam, Rudis, Robert, Camargo, Pedro, A., Sciaini, Marco, Scherer, & Cédric. (2021). viridis - Colorblind-Friendly Color Maps for R. https://doi.org/10.5281/zenodo.4679424

Goldberg, D. E., Melgar, D., Sahakian, V. J., Thomas, A. M., Xu, X., Crowell, B. W., & Geng, J. (2020). Complex Rupture of an Immature Fault Zone: A Simultaneous Kinematic Model of the 2019 Ridgecrest, CA Earthquakes. Geophysical Research Letters, 47(3), e2019GL086382. https://doi.org/https://doi.org/10.1029/2019GL086382 DOI: https://doi.org/10.1029/2019GL086382

Gräler, B., Pebesma, E., & Heuvelink, G. (2016). Spatio-Temporal Interpolation using gstat. The R Journal, 8, 204–218. https://journal.r-project.org/archive/2016/RJ-2016-014/%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20index.html DOI: https://doi.org/10.32614/RJ-2016-014

Grendas, I., Theodoulidis, N., Hollender, F., & Hatzidimitriou, P. (2022). Spectral decomposition of S-waves in investigating regional dependent attenuation and improving site amplification factors: A case study in western Greece. Bulletin of Earthquake Engineering, 20(12), 1573–1456. https://doi.org/https://doi.org/10.1007/s10518-022-01459-z DOI: https://doi.org/10.1007/s10518-022-01459-z

Keilis-Borok, V. (1959). On estimation of the displacement in an earthquake source and of source dimensions. Ann. Geophys, 12(2), 205–214. https://doi.org/doi.org/10.4401/ag-5718

Koenker, R., & Ng, P. (2021). SparseM: Sparse Linear Algebra. R Package Version 1.81. https://CRAN.R-project.org/package=SparseM

Koulakov, I., Bindi, D., Parolai, S., Grosser, H., & Milkereit, C. (2010). Distribution of Seismic Velocities and Attenuation in the Crust beneath the North Anatolian Fault (Turkey) from Local Earthquake Tomography. Bulletin of the Seismological Society of America, 100(1), 207–224. https://doi.org/10.1785/0120090105 DOI: https://doi.org/10.1785/0120090105

Lavrentiadis, G., Abrahamson, N. A., & Kuehn, N. M. (2023). A non-ergodic effective amplitude ground-motion model for California. Bullettin of Earthquake Engineering, 5233–5264. https://doi.org/0.1007/s10518-021-01206-w DOI: https://doi.org/10.1007/s10518-021-01206-w

Massicotte, P., & South, A. (2023). rnaturalearth: World Map Data from Natural Earth. https://CRAN.R-project.org/package=rnaturalearth

Mayeda, K., Bindi, D., Roman‐Nieves, J., Morasca, P., Dreger, D., Ji, C., Taira, T., Archuleta, R., Walter, W. R., & Barno, J. (2024). Source‐Scaling Comparison and Validation for Ridgecrest, California: Radiated Energy, Apparent Stress, and Mw Using the Coda Calibration Tool (2.6https://doi.org/10.1785/0120240143 DOI: https://doi.org/10.1785/0120240143

Meng, X., & Goulet, C. A. (2023). Lessons learned from applying varying coefficient model to controlled simulation datasets. Bullettin of Earthquake Engineering, 5151–5174. https://doi.org/10.1007/s10518-022-01512-x DOI: https://doi.org/10.1007/s10518-022-01512-x

Molkenthin, C., Scherbaum, F., Griewank, A., Kuehn, N., & Stafford, P. (2014). A Study of the Sensitivity of Response Spectral Amplitudes on Seismological Parameters Using Algorithmic Differentiation. Bulletin of the Seismological Society of America, 104(5), 2240–2252. https://doi.org/10.1785/0120140022 DOI: https://doi.org/10.1785/0120140022

Mori, J., Abercrombie, R. E., & Kanamori, H. (2003). Stress drops and radiated energies of aftershocks of the 1994 Northridge, California, earthquake. Journal of Geophysical Research: Solid Earth, 108(B11). https://doi.org/https://doi.org/10.1029/2001JB000474 DOI: https://doi.org/10.1029/2001JB000474

Nie, S., & Wang, Y. (2025). Revealing Spatial Variations of Earthquake Stress Drop and Peak Ground Acceleration Using a Non-Ergodic Modeling Framework. Geophysical Research Letters, 52(5), e2024GL112043. https://doi.org/https://doi.org/10.1029/2024GL112043 DOI: https://doi.org/10.1029/2024GL112043

Oth, A., Bindi, D., Parolai, S., & Di Giacomo, D. (2011). Spectral Analysis of K-NET and KiK-net Data in Japan, Part II: On Attenuation Characteristics, Source Spectra, and Site Response of Borehole and Surface Stations. Bulletin of the Seismological Society of America, 101(2), 667–687. https://doi.org/10.1785/0120100135 DOI: https://doi.org/10.1785/0120100135

Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439–446. https://doi.org/10.32614/RJ-2018-009 DOI: https://doi.org/10.32614/RJ-2018-009

Pebesma, E. J., & Bivand, R. (2005). Classes and methods for spatial data in R. R News, 5(2), 9–13. https://CRAN.R-project.org/doc/Rnews/ DOI: https://doi.org/10.32614/CRAN.package.sp

R Core Team. (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/

Rekoske, J. M., Thompson, E. M., Moschetti, M. P., Hearne, M. G., Aagaard, B. T., & Parker, G. A. (2020). The 2019 Ridgecrest, California, Earthquake Sequence Ground Motions: Processed Records and Derived Intensity Metrics. Seismological Research Letters, 91(4), 2010–2023. https://doi.org/10.1785/0220190292 DOI: https://doi.org/10.1785/0220190292

Ross, Z. E., Idini, B., Jia, Z., Stephenson, O. L., Zhong, M., Wang, X., Zhan, Z., Simons, M., Fielding, E. J., Yun, S.-H., Hauksson, E., Moore, A. W., Liu, Z., & Jung, J. (2019). Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence. Science, 366(6463), 346–351. https://doi.org/10.1126/science.aaz0109 DOI: https://doi.org/10.1126/science.aaz0109

Scherbaum, F. (1990). Combined inversion for the three-dimensional Q structure and source parameters using microearthquake spectra. Journal of Geophysical Research: Solid Earth, 95(B8), 12423–12438. https://doi.org/https://doi.org/10.1029/JB095iB08p12423 DOI: https://doi.org/10.1029/JB095iB08p12423

Shearer, P. M., Vandevert, I., Fan, W., Abercrombie, R. E., Bindi, D., Calderoni, G., Chen, X., Ellsworth, W., Harrington, R., Huang, Y., Knudson, T., Roßbach, M., Satriano, C., Supino, M., Trugman, D. T., Yang, H., & Zhang, J. (2024). Earthquake Source Spectra Estimates Vary Widely for Two Ridgecrest Aftershocks Because of Differences in Attenuation Corrections. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120240134 DOI: https://doi.org/10.1785/0120240134

Shelly, D. R. (2020). A High‐Resolution Seismic Catalog for the Initial 2019 Ridgecrest Earthquake Sequence: Foreshocks, Aftershocks, and Faulting Complexity. Seismological Research Letters, 91(4), 1971–1978. https://doi.org/10.1785/0220190309 DOI: https://doi.org/10.1785/0220190309

Shible, H., Hollender, F., Bindi, D., Traversa, P., Oth, A., Edwards, B., Klin, P., Kawase, H., Grendas, I., Castro, R. R., Theodoulidis, N., & Gueguen, P. (2022). GITEC: A Generalized Inversion Technique Benchmark. Bulletin of the Seismological Society of America, 112(2), 850–877. https://doi.org/10.1785/0120210242 DOI: https://doi.org/10.1785/0120210242

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., & Boyd, S. (2020). OSQP: an operator splitting solver for quadratic programs. Mathematical Programming Computation, 12(4), 637–672. https://doi.org/10.1007/s12532-020-00179-2 DOI: https://doi.org/10.1007/s12532-020-00179-2

Trugman, D. T. (2020). Stress‐Drop and Source Scaling of the 2019 Ridgecrest, California, Earthquake Sequence. Bulletin of the Seismological Society of America, 110(4), 1859–1871. https://doi.org/10.1785/0120200009 DOI: https://doi.org/10.1785/0120200009

University of Nevada, Reno. (1971). Nevada Seismic Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/NN

University of Nevada, Reno. (1992). Southern Great Basin Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/SN

Vandevert, I. C., Shearer, P. M., & Fan, W. (2024). Ridgecrest Aftershock Stress Drops from P‐ and S‐Wave Spectral Decomposition. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120240133 DOI: https://doi.org/10.1785/0120240133

White, M. C. A., Fang, H., Catchings, R. D., Goldman, M. R., Steidl, J. H., & Ben-Zion, Y. (2021). Detailed traveltime tomography and seismic catalogue around the 2019 Mw7.1 Ridgecrest, California, earthquake using dense rapid-response seismic data. Geophysical Journal International, 227(1), 204–227. https://doi.org/10.1093/gji/ggab224 DOI: https://doi.org/10.1093/gji/ggab224

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. %7Bhttps://ggplot2.tidyverse.org%7D

Wickham, H., François, R., Henry, L., & Müller, K. (2022). dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr

Wilke, C. O. (2020). cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2.” https://CRAN.R-project.org/package=cowplot

Zhang, J., Chen, X., & Abercrombie, R. E. (2022). Spatiotemporal Variability of Earthquake Source Parameters at Parkfield, California, and Their Relationship With the 2004 M6 Earthquake. Journal of Geophysical Research: Solid Earth, 127(6), e2021JB022851. https://doi.org/https://doi.org/10.1029/2021JB022851 DOI: https://doi.org/10.1029/2021JB022851

Downloads

Additional Files

Published

2025-08-22

How to Cite

Bindi, D., Picozzi, M., Oth, A., & Spallarossa, D. (2025). Impact of Seismic Attenuation Corrections on Source Parameter Estimation. Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.1651

Issue

Section

Articles