Global EarthquakE ScEnarios (GEESE): An OpenQuake Engine-Based Rupture Matching Algorithm and Scenarios Database for Seismic Source Model Testing and Rapid Post-Event Response Analysis

Authors

DOI:

https://doi.org/10.26443/seismica.v4i2.1654

Keywords:

seismic source model development and testing, OpenQuake, finite rupture database, seismic hazard scenarios database, rapid post-event finite rupture generation

Abstract

The Global EarthquakE ScEnarios (GEESE) algorithm retrieves from a seismic hazard input model the ruptures matching a set of criteria (e.g., magnitude, location, focal mechanism). We applied the GEESE algorithm to create a publicly available database (version 1.0) of finite rupture models for past earthquakes which can be used for scenario seismic hazard and risk analysis applications. To this end, we selected earthquakes with a moment magnitude larger than 7.0 and hypocentral depth less than 200 km in the ISC-GEM catalogue (version 10.0) and retrieved the best matching ruptures from the seismic hazard models in the GEM Mosaic. The GEESE algorithm also automatically computes a set of ground-motion fields using each matched rupture, which are also provided in the database. The ability of the GEESE algorithm to test whether a Mosaic model can generate a rupture sufficiently representative of a queried event is a useful means of evaluating the Mosaic model's seismic source characterisation (SSC). Sufficiently matching ruptures are retrieved from the Global Mosaic for 90 percent of the tested ISC-GEM events. The GEESE algorithm can also be used in post-event response analysis to rapidly obtain an initial finite rupture when only minimal event information is initially available. A demonstration of these capabilities of the GEESE algorithm is provided using the 2023 Morocco earthquake, the 1994 Northridge earthquake, and the 2023 Kahramanmaras earthquake.

References

Böse, M., Heaton, T. H., & Hauksson, E. (2012). Real-time Finite Fault Rupture Detector (FinDer) for large earthquakes. Geophysical Journal International, 191(2). https://doi.org/10.1111/j.1365-246X.2012.05657.x

Brooks, C., Pagani, M., M. ad Villani, Johnson, K., Styron, R., & Bayliss, K. (2025). Global EarthquakE ScEnarios (GEESE): An OpenQuake Engine-Based Rupture Matching Algorithm and Scenarios Database [Dataset]. https://doi.org/10.5281/zenodo.14981706

Danciu, L., Nandan, S., Reyes, C., Basili, R., Weatherill, G., Beauval, C., Rovida, A., Vilanova, S., Sesetyan, K., Bard, P.-Y., Cotton, F., Wiemer, S., & Giardini, D. (2021). The 2020 update of the European Seismic Hazard Model - ESHM20: Model Overview. EFEHR European Facilities of Earthquake Hazard. https://doi.org/10.12686/A15

Di Giacomo, D., Engdahl, E. R., & Storchak, D. A. (2018). The ISC-GEM Earthquake Catalogue (1904–2014): status after the Extension Project. Earth System Science Data, 10(4), 1877–1899. https://doi.org/10.5194/essd-10-1877-2018

Engler, D. T., Worden, C. B., Thompson, E. M., & Jaiswal, K. S. (2022). Partitioning Ground Motion Uncertainty When Conditioned on Station Data. Bulletin of the Seismological Society of America, 112(2), 1060–1079. https://doi.org/10.1785/0120210177

Field, E. H., Jordan, T. H., Page, M. T., Milner, K. R., Shaw, B. E., Dawson, T. E., Biasi, G. P., Parsons, T., Hardebeck, J. L., Michael, A. J., Weldon, R. J., Powers, P. M., Johnson, K. M., Zeng, Y., Felzer, K. R., Elst, N. van der, Madden, C., Arrowsmith, R., Werner, M. J., & Thatcher, W. R. (2017). A Synoptic View of the Third Uniform California Earthquake Rupture Forecast (UCERF3). Seismological Research Letters, 88(5), 1259–1267. https://doi.org/10.1785/0220170045

Goda, K., & Atkinson, G. M. (2009). Probabilistic Characterization of Spatially Correlated Response Spectra for Earthquakes in Japan. Bulletin of the Seismological Society of America, 99(5), 3003–3020. https://doi.org/10.1785/0120090007

Hough, S. E., Graves, R. W., Cochran, E. S., Yoon, C. E., Blair, L., Haefner, S., Wald, D. J., & Quitoriano, V. (2024). The 17 January 1994 Northridge, California, Earthquake: A Retrospective Analysis. The Seismic Record, 4(3), 151–160. https://doi.org/10.1785/0320240012

Jayaram, N., & Baker, J. W. (2009). Correlation model for spatially distributed ground‐motion intensities. Earthquake Engineering & Structural Dynamics, 38(15), 1687–1708. https://doi.org/10.1002/eqe.922

Johnson, K., Villani, M., Bayliss, K., Brooks, C., Chandrasekhar, S., Chartier, T., Chen, Y., Garcia-Pelaez, J., Gee, R., Rood, A., Simionato, M., & Pagani, M. (2023). Global earthquake model (GEM) seismic hazard map [Technical report,]. Global Earthquake Model.

Jones, L., Aki, K., Boore, D., Çelebi, M., Donnellan, A., Hall, J., Harris, R., Hauksson, E., Heaton, T., Hough, S., Hudnut, K., Hutton, K., Johnston, M., Joyner, W., Kanamori, H., Marshall, G., Michael, A., Mori, J., Murray, M., … Zoback, M. L. (1994). The Magnitude 6.7 Northridge, California, Earthquake of 17 January 1994. Science, 266(5184), 389–397. https://doi.org/10.1126/science.266.5184.389

Mai, P. M., & Thingbaijam, K. K. S. (2014). SRCMOD: An Online Database of Finite-Fault Rupture Models. Seismological Research Letters, 85(6), 1348–1357. https://doi.org/10.1785/0220140077

Pagani, M., Johnson, K., & Garcia Pelaez, J. (2020). Modelling subduction sources for probabilistic seismic hazard analysis. Geological Society, London, Special Publications, 501(1), 225–244. https://doi.org/10.1144/sp501-2019-120

Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., Henshaw, P., Butler, L., Nastasi, M., Panzeri, L., Simionato, M., & Vigano, D. (2014). OpenQuake Engine: An open hazard (and risk) software for the Global Earthquake Model. Seismological Research Letters, 85(3). https://doi.org/10.1785/0220130087

Pagani, Marco, Bayliss, K., Brooks, C., Johnson, K., Styron, R., Villani, M., & Rong, Y. (2025). The OpenQuake Model Building Toolkit: A suite of tools for building components of a seismic hazard model [Preprint]. California Digital Library (CDL). https://doi.org/10.31223/x5q43f

Pagani, Marco, Garcia-Pelaez, J., Gee, R., Johnson, K., Poggi, V., Silva, V., Simionato, M., Styron, R., Viganò, D., Danciu, L., Monelli, D., & Weatherill, G. (2020). The 2018 version of the Global Earthquake Model: Hazard component. Earthquake Spectra, 36, 226–251. https://doi.org/10.1177/8755293020931866

Petersen, M. D., Shumway, A. M., Powers, P. M., Mueller, C. S., Moschetti, M. P., Frankel, A. D., Rezaeian, S., McNamara, D. E., Luco, N., Boyd, O. S., Rukstales, K. S., Jaiswal, K. S., Thompson, E. M., Hoover, S. M., Clayton, B. S., Field, E. H., & Zeng, Y. (2019). The 2018 update of the US National Seismic Hazard Model: Overview of model and implications. Earthquake Spectra, 36(1), 5–41. https://doi.org/10.1177/8755293019878199

Poggi, V., Garcia-Peláez, J., Styron, R., Pagani, M., & Gee, R. (2020). A probabilistic seismic hazard model for North Africa. Bulletin of Earthquake Engineering, 18(7), 2917–2951. https://doi.org/10.1007/s10518-020-00820-4

Rhoades, D. A., Schorlemmer, D., Gerstenberger, M. C., Christophersen, A., Zechar, J. D., & Imoto, M. (2011). Efficient testing of earthquake forecasting models. Acta Geophysica, 59(4), 728–747. https://doi.org/10.2478/s11600-011-0013-5

Storchak, D. A., Di Giacomo, D., Bondar, I., Engdahl, E. R., Harris, J., Lee, W. H. K., Villasenor, A., & Bormann, P. (2013). Public Release of the ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009). Seismological Research Letters, 84(5), 810–815. https://doi.org/10.1785/0220130034

Styron, R., Pagani, M., & Johnson, K. (2023). Hamlet - tools for hazard model evaluation and testing [Software]. https://github.com/GEMScienceTools/hamlet

Wald, D. J., Heaton, T. H., & Hudnut, K. W. (1996). The slip history of the 1994 Northridge, California earthquake determined from strong-motion, teleseismic, GPS, and leveling data. Bulletin of the Seismological Society of America, 86(1B), S49–S70. https://doi.org/10.1785/bssa08601b0s49

Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4). https://doi.org/10.1785/BSSA0840040974

Zechar, J. D., Gerstenberger, M. C., & Rhoades, D. A. (2010). Likelihood-Based Tests for Evaluating Space-Rate-Magnitude Earthquake Forecasts. Bulletin of the Seismological Society of America, 100(3), 1184–1195. https://doi.org/10.1785/0120090192

Downloads

Additional Files

Published

2025-07-29

How to Cite

Brooks, C., Pagani, M., Villani, M., Johnson, K., Styron, R., & Bayliss, K. (2025). Global EarthquakE ScEnarios (GEESE): An OpenQuake Engine-Based Rupture Matching Algorithm and Scenarios Database for Seismic Source Model Testing and Rapid Post-Event Response Analysis. Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.1654

Issue

Section

Articles