Aftershocks in Stress Shadows are Inconsistent with Modeled Static Coulomb Stress Changes
DOI:
https://doi.org/10.26443/seismica.v4i2.1657Keywords:
aftershocks, stress triggering, 2019 Ridgecrest sequence, 2016 Kumamoto sequenceAbstract
Aftershock triggering is commonly attributed to increases in static Coulomb stress. In some areas, termed "stress shadows", a decrease in Coulomb stress is predicted to suppress earthquake occurrence. However, aftershocks are often observed in the modeled stress shadows. We examine several hypotheses that attempt to reconcile these shadow aftershocks with the static Coulomb stress change model: (1) they appear to be in shadows because of inaccuracy in the stress change calculations, (2) they occur on faults of unusual orientation which actually experienced increased Coulomb stress, (3) they occur on faults with different frictional properties, not modeled well by Coulomb stress, and (4) they are secondary aftershocks triggered by prior aftershocks or afterslip. When tested on the 2016 Mw7.0 Kumamoto, Japan, and 2019 Mw7.1 Ridgecrest, California, aftershock sequences, none of these hypotheses can explain the majority of the shadow aftershocks, and taken together these hypotheses can explain only about half of these aftershocks. This implies that Coulomb stress modeling that lacks small-scale fault zone heterogeneity might be inadequate to fully capture the true static stress changes and/or that other physical triggering models are needed, for example transient processes such as delayed triggering by dynamic stress changes from the passing seismic waves.
References
Asano, K., & Iwata, T. (2016). Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data. Earth, Planets and Space, 68(1). https://doi.org/10.1186/s40623-016-0519-9
Barnhart, W. D., Hayes, G. P., & Gold, R. D. (2019). The July 2019 Ridgecrest, California, Earthquake Sequence: Kinematics of Slip and Stressing in Cross‐Fault Ruptures. Geophysical Research Letters, 46(21), 11859–11867. https://doi.org/10.1029/2019gl084741
Beeler, N. M. (2007). 13. Laboratory-Observed Faulting in Intrinsically and Apparently Weak Materials: Strength, Seismic Coupling, Dilatancy, and Pore-Fluid Pressure. In The Seismogenic Zone of Subduction Thrust Faults (pp. 370–449). Columbia University Press. https://doi.org/10.7312/dixo13866-013
Beroza, G., & Zanzerkia, E. E. (2024). An Unambiguous Signature of Pore Fluid Aftershock Triggering in the Landers Earthquake Sequence. Annals of Geophysics, 67(4), S432. https://doi.org/10.4401/ag-9162
Brodsky, E. E., Roeloffs, E., Woodcock, D., Gall, I., & Manga, M. (2003). A mechanism for sustained groundwater pressure changes induced by distant earthquakes. Journal of Geophysical Research: Solid Earth, 108(B8). https://doi.org/10.1029/2002jb002321
Brooks, B. A., Murray, J., Svarc, J., Phillips, E., Turner, R., Murray, M., Ericksen, T., Wang, K., Minson, S., Burgmann, R., Pollitz, F., Hudnut, K., Nevitt, J., Roeloffs, E., Hernandez, J., & Olson, B. (2020). Rapid Geodetic Observations of Spatiotemporally Varying Postseismic Deformation Following the Ridgecrest Earthquake Sequence: The U.S. Geological Survey Response. Seismological Research Letters, 91(4), 2108–2123. https://doi.org/10.1785/0220200007
California Institute of Technology and United States Geological Survey Pasadena. (1926). Southern California Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/CI
Cattania, C., Hainzl, S., Wang, L., Enescu, B., & Roth, F. (2015). Aftershock triggering by postseismic stresses: A study based on Coulomb rate‐and‐state models. Journal of Geophysical Research: Solid Earth, 120(4), 2388–2407. https://doi.org/10.1002/2014jb011500
Cheng, Y., Hauksson, E., & Ben‐Zion, Y. (2023). Refined Earthquake Focal Mechanism Catalog for Southern California Derived With Deep Learning Algorithms. Journal of Geophysical Research: Solid Earth, 128(2). https://doi.org/10.1029/2022jb025975
DeVries, P. M. R., Viégas, F., Wattenberg, M., & Meade, B. J. (2018). Deep learning of aftershock patterns following large earthquakes. Nature, 560(7720), 632–634. https://doi.org/10.1038/s41586-018-0438-y
Dieterich, J. (1994). A constitutive law for rate of earthquake production and its application to earthquake clustering. Journal of Geophysical Research: Solid Earth, 99(B2), 2601–2618. https://doi.org/10.1029/93jb02581
Felzer, K. R. (2014). Pulverization provides a mechanism for the nucleation of earthquakes at low stress on strong faults. Frontiers in Earth Science, 2. https://doi.org/10.3389/feart.2014.00020
Felzer, K. R., Abercrombie, R. E., & Ekström, G. (2003). Secondary Aftershocks and Their Importance for Aftershock Forecasting. Bulletin of the Seismological Society of America, 93(4), 1433–1448. https://doi.org/10.1785/0120020229
Felzer, K. R., & Brodsky, E. E. (2005). Testing the stress shadow hypothesis. Journal of Geophysical Research: Solid Earth, 110(B5). https://doi.org/10.1029/2004jb003277
Gomberg, J., Bodin, P., & Reasenberg, P. A. (2003). Observing Earthquakes Triggered in the Near Field by Dynamic Deformations. Bulletin of the Seismological Society of America, 93(1), 118–138. https://doi.org/10.1785/0120020075
Hainzl, S., Enescu, B., Cocco, M., Woessner, J., Catalli, F., Wang, R., & Roth, F. (2009). Aftershock modeling based on uncertain stress calculations. Journal of Geophysical Research: Solid Earth, 114(B5). https://doi.org/10.1029/2008jb006011
Hardebeck, J. L., & Harris, R. A. (2022). Earthquakes in the Shadows: Why Aftershocks Occur at Surprising Locations. The Seismic Record, 2(3), 207–216. https://doi.org/10.1785/0320220023
Hardebeck, J. L., & Shearer, P. M. (2002). A New Method for Determining First-Motion Focal Mechanisms. Bulletin of the Seismological Society of America, 92(6), 2264–2276. https://doi.org/10.1785/0120010200
Harris, R. A., & Simpson, R. W. (1996). In the shadow of 1857‐the effect of the Great Ft. Tejon Earthquake on subsequent earthquakes in southern California. Geophysical Research Letters, 23(3), 229–232. https://doi.org/10.1029/96gl00015
Harris, R. A., & Simpson, R. W. (1998). Suppression of large earthquakes by stress shadows: A comparison of Coulomb and rate‐and‐state failure. Journal of Geophysical Research: Solid Earth, 103(B10), 24439–24451. https://doi.org/10.1029/98jb00793
Helmstetter, A., & Shaw, B. E. (2006). Relation between stress heterogeneity and aftershock rate in the rate‐and‐state model. Journal of Geophysical Research: Solid Earth, 111(B7). https://doi.org/10.1029/2005jb004077
Im, K., Avouac, J.-P., Heimisson, E. R., & Elsworth, D. (2021). Ridgecrest aftershocks at Coso suppressed by thermal destressing. Nature, 595(7865), 70–74. https://doi.org/10.1038/s41586-021-03601-4
Imanishi, K., Ando, R., & Kuwahara, Y. (2012). Unusual shallow normal‐faulting earthquake sequence in compressional northeast Japan activated after the 2011 off the Pacific coast of Tohoku earthquake. Geophysical Research Letters, 39(9). https://doi.org/10.1029/2012gl051491
Japan Meteorological Agency. (2024). The Seismological Bulletin of Japan. https://www.data.jma.go.jp/svd/eqev/data/bulletin/eqdoc
Jia, Z., Wang, X., & Zhan, Z. (2020). Multifault Models of the 2019 Ridgecrest Sequence Highlight Complementary Slip and Fault Junction Instability. Geophysical Research Letters, 47(17). https://doi.org/10.1029/2020gl089802
Jin, Z., & Fialko, Y. (2020). Finite Slip Models of the 2019 Ridgecrest Earthquake Sequence Constrained by Space Geodetic Data and Aftershock Locations. Bulletin of the Seismological Society of America, 110(4), 1660–1679. https://doi.org/10.1785/0120200060
Johnson, P. A., Savage, H., Knuth, M., Gomberg, J., & Marone, C. (2008). Effects of acoustic waves on stick–slip in granular media and implications for earthquakes. Nature, 451(7174), 57–60. https://doi.org/10.1038/nature06440
Kilb, D., Gomberg, J., & Bodin, P. (2000). Triggering of earthquake aftershocks by dynamic stresses. Nature, 408(6812), 570–574. https://doi.org/10.1038/35046046
King, G. C., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3). https://doi.org/10.1785/BSSA0840030935
Kobayashi, H., Koketsu, K., & Miyake, H. (2017). Rupture processes of the 2016 Kumamoto earthquake sequence: Causes for extreme ground motions. Geophysical Research Letters, 44(12), 6002–6010. https://doi.org/10.1002/2017gl073857
Kubo, H., Suzuki, W., Aoi, S., & Sekiguchi, H. (2016). Source rupture processes of the 2016 Kumamoto, Japan, earthquakes estimated from strong-motion waveforms. Earth, Planets and Space, 68(1). https://doi.org/10.1186/s40623-016-0536-8
Liu, C., Lay, T., Brodsky, E. E., Dascher‐Cousineau, K., & Xiong, X. (2019). Coseismic Rupture Process of the Large 2019 Ridgecrest Earthquakes From Joint Inversion of Geodetic and Seismological Observations. Geophysical Research Letters, 46(21), 11820–11829. https://doi.org/10.1029/2019gl084949
Liu, Y., Cui, X., Hu, Y., Zhang, J., & Chen, Y. (2024). Integrated Investigation on Heterogeneous Lower Crust Rheology in Kyushu and Afterslip Behavior Following the 2016 Mw7.1 Kumamoto Earthquake. Geophysical Research Letters, 51(7). https://doi.org/10.1029/2023gl107606
Ma, K., Chan, C., & Stein, R. S. (2005). Response of seismicity to Coulomb stress triggers and shadows of the 1999 Mw = 7.6 Chi‐Chi, Taiwan, earthquake. Journal of Geophysical Research: Solid Earth, 110(B5). https://doi.org/10.1029/2004jb003389
Mai, P. M., & Thingbaijam, K. K. S. (2014). SRCMOD: An Online Database of Finite-Fault Rupture Models. Seismological Research Letters, 85(6), 1348–1357. https://doi.org/10.1785/0220140077
Mallman, E. P., & Parsons, T. (2008). A global search for stress shadows. Journal of Geophysical Research: Solid Earth, 113(B12). https://doi.org/10.1029/2007jb005336
Mallman, E. P., & Zoback, M. D. (2007). Assessing elastic Coulomb stress transfer models using seismicity rates in southern California and southwestern Japan. Journal of Geophysical Research: Solid Earth, 112(B3). https://doi.org/10.1029/2005jb004076
Mancini, S., Segou, M., Werner, M. J., & Cattania, C. (2019). Improving physics‐based aftershock forecasts during the 2016–2017 Central Italy Earthquake Cascade. Journal of Geophysical Research: Solid Earth, 124(8), 8626–8643. https://doi.org/10.1029/2019jb017874
Mancini, S., Segou, M., Werner, M. J., & Parsons, T. (2020). The Predictive Skills of Elastic Coulomb Rate-and-State Aftershock Forecasts during the 2019 Ridgecrest, California, Earthquake Sequence. Bulletin of the Seismological Society of America, 110(4), 1736–1751. https://doi.org/10.1785/0120200028
Marsan, D. (2003). Triggering of seismicity at short timescales following Californian earthquakes. Journal of Geophysical Research: Solid Earth, 108(B5). https://doi.org/10.1029/2002jb001946
Marsan, D. (2006). Can coseismic stress variability suppress seismicity shadows? Insights from a rate‐and‐state friction model. Journal of Geophysical Research: Solid Earth, 111(B6). https://doi.org/10.1029/2005jb004060
Marsan, D., & Nalbant, S. S. (2005). Methods for Measuring Seismicity Rate Changes: A Review and a Study of How the Mw 7.3 Landers Earthquake Affected the Aftershock Sequence of the Mw 6.1 Joshua Tree Earthquake. Pure and Applied Geophysics, 162(6–7), 1151–1185. https://doi.org/10.1007/s00024-004-2665-4
Martínez‐Garzón, P., Meier, M., Collettini, C., Lanza, F., & Dresen, G. (2025). Stress Heterogeneities Governed by Fault Structure and Stress Transfer: The 2016–2017 Central Italy Seismic Sequence. Journal of Geophysical Research: Solid Earth, 130(8). https://doi.org/10.1029/2024jb029763
McCloskey, J., Nalbant, S. S., Steacy, S., Nostro, C., Scotti, O., & Baumont, D. (2003). Structural constraints on the spatial distribution of aftershocks. Geophysical Research Letters, 30(12). https://doi.org/10.1029/2003gl017225
Meade, B. J., DeVries, P. M. R., Faller, J., Viegas, F., & Wattenberg, M. (2017). What Is Better Than Coulomb Failure Stress? A Ranking of Scalar Static Stress Triggering Mechanisms from 105 Mainshock‐Aftershock Pairs. Geophysical Research Letters, 44(22). https://doi.org/10.1002/2017gl075875
Meier, M. ‐A., Werner, M. J., Woessner, J., & Wiemer, S. (2014). A search for evidence of secondary static stress triggering during the 1992 Mw7.3 Landers, California, earthquake sequence. Journal of Geophysical Research: Solid Earth, 119(4), 3354–3370. https://doi.org/10.1002/2013jb010385
Meng, X., & Peng, Z. (2014). Seismicity rate changes in the Salton Sea Geothermal Field and the San Jacinto Fault Zone after the 2010 Mw 7.2 El Mayor-Cucapah earthquake. Geophysical Journal International, 197(3), 1750–1762. https://doi.org/10.1093/gji/ggu085
Michael, A. J. (1984). Determination of stress from slip data: Faults and folds. Journal of Geophysical Research: Solid Earth, 89(B13), 11517–11526. https://doi.org/10.1029/jb089ib13p11517
Nakagomi, K., Terakawa, T., Matsumoto, S., & Horikawa, S. (2021). Stress and pore fluid pressure control of seismicity rate changes following the 2016 Kumamoto earthquake, Japan. Earth, Planets and Space, 73(1). https://doi.org/10.1186/s40623-020-01329-5
Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018–1040. https://doi.org/10.1785/bssa0820021018
Parsons, T. (2002). Global Omori law decay of triggered earthquakes: Large aftershocks outside the classical aftershock zone. Journal of Geophysical Research: Solid Earth, 107(B9). https://doi.org/10.1029/2001jb000646
Parsons, T. (2005). A hypothesis for delayed dynamic earthquake triggering. Geophysical Research Letters, 32(4). https://doi.org/10.1029/2004gl021811
Parsons, T., Stein, R. S., Simpson, R. W., & Reasenberg, P. A. (1999). Stress sensitivity of fault seismicity: A comparison between limited‐offset oblique and major strike‐slip faults. Journal of Geophysical Research: Solid Earth, 104(B9), 20183–20202. https://doi.org/10.1029/1999jb900056
Perfettini, H., & Avouac, J. ‐P. (2004). Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi‐Chi earthquake, Taiwan. Journal of Geophysical Research: Solid Earth, 109(B2). https://doi.org/10.1029/2003jb002488
Pollitz, F. F., & Cattania, C. (2017). Connecting crustal seismicity and earthquake‐driven stress evolution in Southern California. Journal of Geophysical Research: Solid Earth, 122(8), 6473–6490. https://doi.org/10.1002/2017jb014200
Pollitz, F. F., & Johnston, M. J. S. (2006). Direct test of static stress versus dynamic stress triggering of aftershocks. Geophysical Research Letters, 33(15). https://doi.org/10.1029/2006gl026764
Reasenberg, P. A., & Simpson, R. W. (1992). Response of Regional Seismicity to the Static Stress Change Produced by the Loma Prieta Earthquake. Science, 255(5052), 1687–1690. https://doi.org/10.1126/science.255.5052.1687
Ross, Z. E., Idini, B., Jia, Z., Stephenson, O. L., Zhong, M., Wang, X., Zhan, Z., Simons, M., Fielding, E. J., Yun, S.-H., Hauksson, E., Moore, A. W., Liu, Z., & Jung, J. (2019). Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence. Science, 366(6463), 346–351. https://doi.org/10.1126/science.aaz0109
Sagiya, T., Miyazaki, S., & Tada, T. (2000). Continuous GPS Array and Present-day Crustal Deformation of Japan. Pure and Applied Geophysics, 157(11), 2303–2322. https://doi.org/10.1007/pl00022507
SCEDC. (2013). Southern California Earthquake Data Center. Caltech. https://doi.org/10.7909/C3WD3XH1
Segou, M., & Parsons, T. (2014). The stress shadow problem in physics‐based aftershock forecasting: Does incorporation of secondary stress changes help? Geophysical Research Letters, 41(11), 3810–3817. https://doi.org/10.1002/2013gl058744
Segou, M., & Parsons, T. (2020). A New Technique to Calculate Earthquake Stress Transfer and to Probe the Physics of Aftershocks. Bulletin of the Seismological Society of America, 110(2), 863–873. https://doi.org/10.1785/0120190033
Segou, M., Parsons, T., & Ellsworth, W. (2013). Comparative evaluation of physics‐based and statistical forecasts in Northern California. Journal of Geophysical Research: Solid Earth, 118(12), 6219–6240. https://doi.org/10.1002/2013jb010313
Sharma, S., Hainzl, S., Zöeller, G., & Holschneider, M. (2020). Is Coulomb Stress the Best Choice for Aftershock Forecasting? Journal of Geophysical Research: Solid Earth, 125(9). https://doi.org/10.1029/2020jb019553
Steacy, S., Nalbant, S. S., McCloskey, J., Nostro, C., Scotti, O., & Baumont, D. (2005). Onto what planes should Coulomb stress perturbations be resolved? Journal of Geophysical Research: Solid Earth, 110(B5). https://doi.org/10.1029/2004jb003356
Stein, R. S., Barka, A. A., & Dieterich, J. H. (1997). Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128(3), 594–604. https://doi.org/10.1111/j.1365-246x.1997.tb05321.x
Toda, S., & Stein, R. (2003). Toggling of seismicity by the 1997 Kagoshima earthquake couplet: A demonstration of time‐dependent stress transfer. Journal of Geophysical Research: Solid Earth, 108(B12). https://doi.org/10.1029/2003jb002527
Toda, S., & Stein, R. S. (2002). Response of the San Andreas fault to the 1983 Coalinga‐Nuñez earthquakes: An application of interaction‐based probabilities for Parkfield. Journal of Geophysical Research: Solid Earth, 107(B6). https://doi.org/10.1029/2001jb000172
Toda, S., & Stein, R. S. (2022). Central shutdown and surrounding activation of aftershocks from megathrust earthquake stress transfer. Nature Geoscience, 15(6), 494–500. https://doi.org/10.1038/s41561-022-00954-x
Toda, S., Stein, R. S., Beroza, G. C., & Marsan, D. (2012). Aftershocks halted by static stress shadows. Nature Geoscience, 5(6), 410–413. https://doi.org/10.1038/ngeo1465
Uchide, T. (2020). Focal mechanisms of small earthquakes beneath the Japanese islands based on first-motion polarities picked using deep learning. Geophysical Journal International, 223(3), 1658–1671. https://doi.org/10.1093/gji/ggaa401
van der Elst, N. J., & Brodsky, E. E. (2010). Connecting near‐field and far‐field earthquake triggering to dynamic strain. Journal of Geophysical Research: Solid Earth, 115(B7). https://doi.org/10.1029/2009jb006681
van der Elst, N. J., & Savage, H. M. (2015). Frequency dependence of delayed and instantaneous triggering on laboratory and simulated faults governed by rate‐state friction. Journal of Geophysical Research: Solid Earth, 120(5), 3406–3429. https://doi.org/10.1002/2014jb011611
Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002. https://doi.org/10.1785/bssa0840040974
Woessner, J., Hainzl, S., Marzocchi, W., Werner, M. J., Lombardi, A. M., Catalli, F., Enescu, B., Cocco, M., Gerstenberger, M. C., & Wiemer, S. (2011). A retrospective comparative forecast test on the 1992 Landers sequence. Journal of Geophysical Research, 116(B5). https://doi.org/10.1029/2010jb007846
Woessner, J., Hauksson, E., Wiemer, S., & Neukomm, S. (2004). The 1997 Kagoshima (Japan) earthquake doublet: A quantitative analysis of aftershock rate changes. Geophysical Research Letters, 31(3). https://doi.org/10.1029/2003gl018858
Xu, X., Sandwell, D. T., & Smith-Konter, B. (2020). Coseismic Displacements and Surface Fractures from Sentinel-1 InSAR: 2019 Ridgecrest Earthquakes. Seismological Research Letters, 91(4), 1979–1985. https://doi.org/10.1785/0220190275
Yagi, Y., Okuwaki, R., Enescu, B., Kasahara, A., Miyakawa, A., & Otsubo, M. (2016). Rupture process of the 2016 Kumamoto earthquake in relation to the thermal structure around Aso volcano. Earth, Planets and Space, 68(1). https://doi.org/10.1186/s40623-016-0492-3
Yue, C., Dai, D., Li, X., Wang, Y., Zhang, Y., Yang, W., Han, Y., Qu, C., & Meng, L. (2025). Aftershock Triggering Mechanism by the 7 January 2025 Mw 7.1 Tingri Earthquake. Seismological Research Letters. https://doi.org/10.1785/0220250091
Yue, H., Ross, Z. E., Liang, C., Michel, S., Fattahi, H., Fielding, E., Moore, A., Liu, Z., & Jia, B. (2017). The 2016 Kumamoto Mw = 7.0 Earthquake: A Significant Event in a Fault–Volcano System. Journal of Geophysical Research: Solid Earth, 122(11), 9166–9183. https://doi.org/10.1002/2017jb014525
Yue, H., Sun, J., Wang, M., Shen, Z., Li, M., Xue, L., Lu, W., Zhou, Y., Ren, C., & Lay, T. (2021). The 2019 Ridgecrest, California earthquake sequence: Evolution of seismic and aseismic slip on an orthogonal fault system. Earth and Planetary Science Letters, 570, 117066. https://doi.org/10.1016/j.epsl.2021.117066
Zhang, Y., Shan, X., Zhang, G., Gong, W., Liu, X., Yin, H., Zhao, D., Wen, S., & Qu, C. (2018). Source Model of the 2016 Kumamoto, Japan, Earthquake Constrained by InSAR, GPS, and Strong‐Motion Data: Fault Slip under Extensional Stress. Bulletin of the Seismological Society of America, 108(5A), 2675–2686. https://doi.org/10.1785/0120180023
Zhang, Y., Zheng, X., Chen, Q., Liu, X., Huang, X., Yang, Y., Xu, Q., & Zhao, J. (2020). Automatic Inversion of Rupture Processes of the Foreshock and Mainshock and Correlation of the Seismicity during the 2019 Ridgecrest Earthquake Sequence. Seismological Research Letters, 91(3), 1556–1566. https://doi.org/10.1785/0220190343
Zhuang, J., Ogata, Y., & Vere-Jones, D. (2002). Stochastic Declustering of Space-Time Earthquake Occurrences. Journal of the American Statistical Association, 97(458), 369–380. https://doi.org/10.1198/016214502760046925
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jeanne Hardebeck, Ruth Harris

This work is licensed under a Creative Commons Attribution 4.0 International License.
 
							

