3D Converted Wave Reverse Time Migration Imaging

Authors

  • Leah Langer Department of Geophysics, Tel Aviv University, Tel Aviv, Israel https://orcid.org/0000-0002-5384-0500
  • Christopher Henze NASA Ames Research Center, Moffett Field, CA, USA
  • Fred F. Pollitz U.S. Geological Survey, Moffett Field, CA, USA
  • Jeffrey J. McGuire U.S. Geological Survey, Moffett Field, CA, USA

DOI:

https://doi.org/10.26443/seismica.v4i2.1660

Keywords:

Computational seismology, Theoretical Seismology, Subduction zone processes, Wave propagation, Reverse time migration, converted waves, Seismic imaging

Abstract

We describe a newly developed method for recovering high-resolution images of seismic discontinuities, such as subducting slabs, in 3D. Our method makes use of converted SP or PS waves observed by dense arrays of seismometers to infer the locations and relative strengths of seismic discontinuities at depth in a target region. Observed direct and converted waves are backpropagated to their times of origin. The time-reversed wavefield is then separated into its constituent P and S components via the Helmholtz decomposition, and those separated wavefields are used to compute imaging functions that characterize the locations and relative strengths of seismic discontinuities. Imaging functions may be designed to use either SP or PS waves, so that users can target those arrivals expected to be most dominant in a given dataset. We have previously demonstrated the efficacy of our method in two dimensions, and we now present a 3D implementation of our technique which addresses the significant computational challenges posed by the size of volumetric wavefield data in three dimensions. Through a series of synthetic examples, we demonstrate that our method is capable of recovering the fine scale structure of a subducting slab given realistic station coverage and earthquake sources. We investigate optimal seismic station geometries for our technique and explore image interpretability in regions with poor data coverage. We find that linear station geometries yield more optimal, interpretable imaging functions than collections of small arrays can. We also show that our method can successfully recover bothSP or PS images when realistic shear earthquake sources are used, and we explore the additional computational challenges presented by the high frequency content of S waves. Our results demonstrate the potential for our technique to recover high-resolution information about subducting slabs in real-world regions, given that relatively sparse seismic arrays with only approximately 100 stations are capable of recovering interpretable imaging functions from just a few realistic earthquake sources for multiple discontinuities at significant depth in an area of approximately 400~sq~km.

References

Bangs, N. L., Morgan, J. K., Bell, R. E., Han, S., Arai, R., Kodaira, S., Gase, A. C., Wu, X., Davy, R., Frahm, L., Tilley, H. L., Barker, D. H. N., Edwards, J. H., Tobin, H. J., Reston, T. J., Henrys, S. A., Moore, G. F., Bassett, D., Kellett, R., … Fry, B. (2023). Slow slip along the Hikurangi margin linked to fluid-rich sediments trailing subducting seamounts. Nature Geoscience, 16(6), 505–512. https://doi.org/10.1038/s41561-023-01186-3

Bassett, D., Shillington, D. J., Wallace, L. M., & Elliott, J. L. (2025–1). Variation in slip behaviour along megathrusts controlled by multiple physical properties. Nature Geoscience, 18(1), 20–31. https://doi.org/10.1038/s41561-024-01617-9

Bostock, M., Rondenay, S., & Shragge, J. (2001). Multiparameter two-dimensional inversion of scattered teleseismic body waves, 1, Theory for oblique incidence. J. Geophys. Res., 106, 30785–30796.

Carbotte, S. M., Boston, B., Han, S., Shuck, B., Beeson, J., Canales, J. P., Tobin, H., Miller, N., Nedimovic, M., Tréhu, A., Lee, M., Lucas, M., Jian, H., Jiang, D., Moser, L., Anderson, C., Judd, D., Fernandez, J., Campbell, C., … Gahlawat, R. (2024). Subducting plate structure and megathrust morphology from deep seismic imaging linked to earthquake rupture segmentation at Cascadia. Science Advances, 10(23), eadl3198. https://doi.org/10.1126/sciadv.adl3198

Christensen, N. I. (1996). Poisson’s ratio and crustal seismology. Journal of Geophysical Research: Solid Earth, 101(B2), 3139–3156. https://doi.org/10.1029/95JB03446

Contreras-Reyes, E., & Carrizo, D. (2011). Control of high oceanic features and subduction channel on earthquake ruptures along the Chile–Peru subduction zone. Physics of the Earth and Planetary Interiors, 186(1), 49–58. https://doi.org/10.1016/j.pepi.2011.03.002

den Hartog, S. A. M., & Spiers, C. J. (2014). A microphysical model for fault gouge friction applied to subduction megathrusts. Journal of Geophysical Research: Solid Earth, 119(2), 1510–1529. https://doi.org/10.1002/2013JB010580

Du, Y., Li, Y. E., Yang, J., Cheng, A., & Fang, X. (2019). Source-free converted-wave reverse time migration: Formulation and limitations. Geophysics, 84, S17–S27.

Duan, B. (2008). Effects of low-velocity fault zones on dynamic ruptures with nonelastic off-fault response. Geophysical Research Letters, 35(4). https://doi.org/10.1029/2008GL033171

Duan, Y., & Sava, P. C. (2015). Scalar imaging condition for elastic reverse-time migration. Geophysics, 80, S127–S136.

Eberhart-Phillips, D., & Reyners, M. (1999). Plate interface properties in the northeast Hikurangi subduction zone, New Zealand, from converted seismic waves. Geophysical Research Letters, 26(16), 2565–2568. https://doi.org/10.1029/1999GL900567

Ghosh, A., Vidale, J. E., Sweet, J. R., Creager, K. C., & Wech, A. G. (2009). Tremor patches in Cascadia revealed by seismic array analysis. Geophysical Research Letters, 36(17). https://doi.org/10.1029/2009GL039080

Gomberg, J., Ludwig, K. A., Bekins, B. A., Brocher, T. M., Brock, J. C., Brothers, D., Chaytor, J. D., Frankel, A. D., Geist, E. L., Haney, M., Hickman, S. H., Leith, W. S., Roeloffs, E. A., Schulz, W. H., Sisson, T. W., Wallace, K., Watt, J. T., & Wein, A. (2017). Reducing risk where tectonic plates collide—U.S. Geological Survey subduction zone science plan: U.S. Geological Survey circular 1428 (p. 45). https://doi.org/10.3133/cir1428

Gong, J., & McGuire, J. J. (2021). Constraints on the geometry of the subducted Gorda plate From converted phases generated by local earthquakes. Journal of Geophysical Research: Solid Earth, 126(2), e2020JB019962. https://doi.org/10.1029/2020JB019962

Guo, H., McGuire, J. J., & Zhang, H. (2021–5). Correlation of porosity variations and rheological transitions on the southern Cascadia megathrust. Nature Geoscience, 14(5), 341–348. https://doi.org/10.1038/s41561-021-00740-1

Herath, P., & Audet, P. (2024). Fluid upwelling across the Hikurangi subduction thrust during deep slow-slip earthquakes. Communications Earth & Environment, 5(1), 697. https://doi.org/10.1038/s43247-024-01864-z

Hilley, G. E., Brodsky, E. E., Roman, D., Shillington, D. J., Brudzinski, M., Behn, H., M. Tobin, & the SZ4D RCN. (2022). SZ4D implementation plan. Stanford Digital Depository. https://doi.org/10.25740/hy589fc7561

Horleston, A. C., & Helffrich, G. R. (2012). Constraining sediment subduction: A converted phase study of the Aleutians and Marianas. Earth and Planetary Science Letters, 359–360, 141–151. https://doi.org/10.1016/j.epsl.2012.10.019

Huang, Y., & Ampuero, J.-P. (2011). Pulse-like ruptures induced by low-velocity fault zones. Journal of Geophysical Research: Solid Earth, 116(B12). https://doi.org/10.1029/2011JB008684

Hutchison, A. A., & Ghosh, A. (2017). Ambient Tectonic Tremor in the San Jacinto fault, near the Anza gap, Detected by multiple mini seismic arrays. Bulletin of the Seismological Society of America, 107(5), 1985–1993. https://doi.org/10.1785/0120160385

Kato, A., Iidaka, T., Ikuta, R., Yoshida, Y., Katsumata, K., Iwasaki, T., Sakai, S., Thurber, C., Tsumura, N., Yamaoka, K., Watanabe, T., Kunitomo, T., Yamazaki, F., Okubo, M., Suzuki, S., & Hirata, N. (2010). Variations of fluid pressure within the subducting oceanic crust and slow earthquakes. Geophysical Research Letters, 37(14). https://doi.org/10.1029/2010GL043723

Komatitsch, D., & Tromp, J. (2002a). Spectral-element simulations of global seismic wave propagation—II. Three-dimensional models, oceans, rotation and self-gravitation. Geophysical Journal International, 150(1), 303–318. https://doi.org/10.1046/j.1365-246X.2002.01716.x

Komatitsch, D., & Tromp, J. (2002b). Spectral-element simulations of global seismic wave propagation—I. Validation. Geophysical Journal International, 149(2), 390–412. https://doi.org/10.1046/j.1365-246X.2002.01653.x

Kutschera, F., Gabriel, A.-A., Wirp, S. A., Li, B., Ulrich, T., Abril, C., & Halldórsson, B. (2024). Linked and fully coupled 3D earthquake dynamic rupture and tsunami modeling for the Húsavík–Flatey Fault Zone in North Iceland. Solid Earth, 15(2), 251–280. https://doi.org/10.5194/se-15-251-2024

Langer, L. (2024). Synthetic seismogram data for 3D converted wave reverse time migration imaging of subduction zone structure: U.S. Geological Survey data release. https://doi.org/10.5066/P13M75JZ

Langer, L., Pollitz, F. F., & McGuire, J. J. (2023). Converted-wave reverse time migration imaging in subduction zone settings. Geophysical Journal International, 235(2), 1384–1402. https://doi.org/10.1093/gji/ggad308

Li, H., & Li, J. (2022). Elastic Transmitted Wave Reverse Time Migration for Imaging Earth’s Interior Discontinuities: A Numerical Study. Bulletin of the Seismological Society of America, 112(5), 2231–2256. https://doi.org/10.1785/0120210325

Li, J., Shillington, D. J., Bécel, A., Nedimović, M. R., Webb, S. C., Saffer, D. M., Keranen, K. M., & Kuehn, H. (2015). Downdip variations in seismic reflection character: Implications for fault structure and seismogenic behavior in the Alaska subduction zone. Journal of Geophysical Research: Solid Earth, 120(11), 7883–7904. https://doi.org/10.1002/2015JB012338

Liu, Y. (2013). Numerical simulations on megathrust rupture stabilized under strong dilatancy strengthening in slow slip region. Geophysical Research Letters, 40(7), 1311–1316. https://doi.org/10.1002/grl.50298

Lotto, G. C., Jeppson, T. N., & Dunham, E. M. (2019). fully coupled simulations of megathrust earthquakes and tsunamis in the Japan trench, Nankai trough, and Cascadia subduction zone. Pure and Applied Geophysics, 176(9), 4009–4041. https://doi.org/10.1007/s00024-018-1990-y

Madden, E. H., Bader, M., Behrens, J., van Dinther, Y., Gabriel, A.-A., Rannabauer, L., Ulrich, T., Uphoff, C., Vater, S., & van Zelst, I. (2020). Linked 3-D modelling of megathrust earthquake-tsunami events: from subduction to tsunami run up. Geophysical Journal International, 224(1), 487–516. https://doi.org/10.1093/gji/ggaa484

Nedimovic, M. R., Hyndman, R. D., Ramachandran, K., & Spence, G. D. (2003). Reflection signature of seismic and aseismic slip on the northern Cascadia subduction interface. Nature, 424(6947), 416–420. https://doi.org/10.1038/nature01840

Nikulin, A., Levin, V., & Park, J. (2009). Receiver function study of the Cascadia megathrust: Evidence for localized serpentinization. Geochemistry, Geophysics, Geosystems, 10(7). https://doi.org/10.1029/2009GC002376

Preston, L. A., Creager, K. C., Crosson, R. S., Brocher, T. M., & Anne M. Trehu. (2003). Intraslab earthquakes: Dehydration of the Cascadia slab. Science, 302(5648), 1197–1200. https://doi.org/10.1126/science.1090751

Ryberg, T., Haberland, Ch., Fuis, G. S., Ellsworth, W. L., & Shelly, D. R. (2010). Locating non-volcanic tremor along the San Andreas Fault using a multiple array source imaging technique. Geophysical Journal International, 183(3), 1485–1500. https://doi.org/10.1111/j.1365-246X.2010.04805.x

Shabelansky, A. H., Malcolm, A., & Fehler, M. (2017). Converted-wave seismic imaging: Amplitude-balancing source-independent imaging conditions. Geophysics, 82, S99–S109.

Shang, X., de Hoop, M. V., & van der Hilst, R. D. (2012). Beyond receiver functions: Passive source reverse time migration and inverse scattering of converted waves. Geophys. Res. Lett., 39, L15308, doi:10.1029/2012GL052289.

Shiraishi, K., Moore, G. F., Yamada, Y., Kinoshita, M., Sanada, Y., & Kimura, G. (2019). Seismogenic zone structures revealed by improved 3-D seismic images in the Nankai trough off Kumano. Geochemistry, Geophysics, Geosystems, 20(5), 2252–2271. https://doi.org/10.1029/2018GC008173

Takemura, S., Furumura, T., & Maeda, T. (2015). Scattering of high-frequency seismic waves caused by irregular surface topography and small-scale velocity inhomogeneity. Geophysical Journal International, 201(1), 459–474. https://doi.org/10.1093/gji/ggv038

Thakur, P., Huang, Y., & Kaneko, Y. (2020). Effects of low-velocity fault damage zones on long-term earthquake behaviors on mature strike-slip faults. Journal of Geophysical Research: Solid Earth, 125(8), e2020JB019587. https://doi.org/10.1029/2020JB019587

Ward, K. M., Lin, F., & Schmandt, B. (2018). High-resolution receiver function imaging across the Cascadia subduction zone Using a dense nodal array. Geophysical Research Letters, 45(22), 12,218-12,225. https://doi.org/10.1029/2018GL079903

Zou, P., Cheng, J., Wang, T., & Zhang, H. (2024). Three-dimensional teleseismic elastic reverse-time migration With deconvolution imaging condition and its application to southwest japan. Geophysical Research Letters, 51(8), e2023GL107446. https://doi.org/10.1029/2023GL107446

Downloads

Published

2025-12-04

How to Cite

Langer, L., Henze, C., Pollitz, F. F., & McGuire, J. J. (2025). 3D Converted Wave Reverse Time Migration Imaging. Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.1660

Issue

Section

Articles