Depth-varying azimuthal anisotropy and mantle flow in the Patagonian slab window

Authors

  • Hannah Mark Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA https://orcid.org/0000-0002-1722-3759
  • Douglas Wiens Department of Earth, Environmental, and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, USA https://orcid.org/0000-0002-5169-4386
  • Walid Ben Mansour Department of Earth, Environmental, and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, USA https://orcid.org/0000-0002-0721-1244
  • Zhengyang Zhou College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA https://orcid.org/0000-0002-7248-1849

DOI:

https://doi.org/10.26443/seismica.v4i2.1670

Abstract

Subduction of spreading ridges forms slab windows which perturb the local structure and dynamics of the upper mantle. Slab windows may alter the pattern of mantle flow and serve as portals for the exchange of mantle material between upper mantle reservoirs that are otherwise separated by the boundary of the subducting slab. Here, we use Rayleigh waves to derive an azimuthally anisotropic regional seismic velocity model for the Patagonian slab window and use the anisotropy model to infer patterns of upper mantle flow and deformation. Anisotropic fast directions are primarily trench-parallel in the upper ~40 km of the mantle throughout the region, likely reflecting the history of subduction and compression along the South American margin. At greater depths sensed by long-period Rayleigh waves, fast directions within the youngest part of the slab window are consistent with cross-basin mantle flow between the Atlantic and Pacific, as previously suggested by shear wave splits. Overall, the anisotropic velocity model reveals complex, depth-dependent patterns of mantle deformation and flow within the Patagonian slab window.

References

Agurto-Detzel, H., Rietbrock, A., Bataille, K., Miller, M., Iwamori, H., & Priestley, K. (2014). Seismicity distribution in the vicinity of the Chile Triple Junction, Aysén Region, southern Chile. Journal of South American Earth Sciences, 51, 1–11. https://doi.org/10.1016/j.jsames.2013.12.011

Ávila, P., & Dávila, F. M. (2018). Heat flow and lithospheric thickness analysis in the Patagonian asthenospheric windows, southern South America. Tectonophysics, 747–748, 99–107. https://doi.org/10.1016/j.tecto.2018.10.006

Ben-Mansour, W., Wiens, D. A., Mark, H. F., Russo, R. M., Richter, A., Marderwald, E., & Barrientos, S. (2022). Mantle Flow Pattern Associated With the Patagonian Slab Window Determined From Azimuthal Anisotropy. Geophysical Research Letters, 49(18). https://doi.org/10.1029/2022GL099871

Bourgois, J., Lagabrielle, Y., Martin, H., Dyment, J., Frutos, J., & Cisternas, M. E. (2016). A Review on Forearc Ophiolite Obduction, Adakite-Like Generation, and Slab Window Development at the Chile Triple Junction Area: Uniformitarian Framework for Spreading-Ridge Subduction. Pure and Applied Geophysics, 173(10–11), 3217–3246. https://doi.org/10.1007/s00024-016-1317-9

Breitsprecher, K., & Thorkelson, D. J. (2009). Neogene kinematic history of Nazca–Antarctic–Phoenix slab windows beneath Patagonia and the Antarctic Peninsula. Tectonophysics, 464(1–4), 10–20. https://doi.org/10.1016/j.tecto.2008.02.013

Civello, S., & Margheriti, L. (2004). Toroidal mantle flow around the Calabrian slab (Italy) from SKS splitting. Geophysical Research Letters, 31(10). https://doi.org/10.1029/2004GL019607

Darbyshire, F. A., & Lebedev, S. (2009). Rayleigh wave phase-velocity heterogeneity and multilayered azimuthal anisotropy of the Superior Craton, Ontario. Geophysical Journal International, 176(1), 215–234. https://doi.org/10.1111/j.1365-246X.2008.03982.x

DeLong, S. E., Schwarz, W. M., & Anderson, R. N. (1979). Thermal effects of ridge subduction. Earth and Planetary Science Letters, 44(2), 239–246. https://doi.org/10.1016/0012-821X(79)90172-9

Eakin, C. M., Obrebski, M., Allen, R. M., Boyarko, D. C., Brudzinski, M. R., & Porritt, R. (2010). Seismic anisotropy beneath Cascadia and the Mendocino triple junction: Interaction of the subducting slab with mantle flow. Earth and Planetary Science Letters, 297(3–4), 627–632. https://doi.org/10.1016/j.epsl.2010.07.015

Gallego, A., Panning, M. P., Russo, R. M., Comte, D., Mocanu, V. I., Murdie, R. E., & Vandecar, J. C. (2011). Azimuthal anisotropy in the Chile Ridge subduction region retrieved from ambient noise. Lithosphere, 3(6). https://doi.org/10.1130/L139.1

Guest, I. A., Saal, A. E., Mallick, S., Gorring, M. L., & Kay, S. M. (2024). The Volcanism of the Meseta del Lago Buenos Aires, Patagonia: the Transition from Subduction to Slab Window. Journal of Petrology, 65(6). https://doi.org/10.1093/petrology/egae052

Guillaume, B., Moroni, M., Funiciello, F., Martinod, J., & Faccenna, C. (2010). Mantle flow and dynamic topography associated with slab window opening: Insights from laboratory models. Tectonophysics, 496(1). https://doi.org/10.1016/j.tecto.2010.10.014

Hollyday, A., Austermann, J., Lloyd, A., Hoggard, M., Richards, F., & Rovere, A. (2023). A Revised Estimate of Early Pliocene Global Mean Sea Level Using Geodynamic Models of the Patagonian Slab Window. Geochemistry, Geophysics, Geosystems, 24(2). https://doi.org/10.1029/2022GC010648

Husson, L., Conrad, C. P., & Faccenna, C. (2012). Plate motions, Andean orogeny, and volcanism above the South Atlantic convection cell. Earth and Planetary Science Letters, 317–318, 126–135. https://doi.org/10.1016/j.epsl.2011.11.040

Jadamec, M. A., & Billen, M. I. (2010). Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge. Nature, 465(7296), 338–341. https://doi.org/10.1038/nature09053

Karato, S., Jung, H., Katayama, I., & Skemer, P. (2008). Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annual Review of Earth and Planetary Sciences, 36(1), 59–95. https://doi.org/10.1146/annurev.earth.36.031207.124120

Katayama, I., Hirauchi, K., Michibayashi, K., & Ando, J. (2009). Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature, 461(7267), 1114–1117. https://doi.org/10.1038/nature08513

Király, Á., Capitanio, F. A., Funiciello, F., & Faccenna, C. (2017). Subduction induced mantle flow: Length-scales and orientation of the toroidal cell. Earth and Planetary Science Letters, 479, 284–297. https://doi.org/10.1016/j.epsl.2017.09.017

Kneller, E. A., van Keken, P. E., Katayama, I., & Karato, S. (2007). Stress, strain, and B-type olivine fabric in the fore-arc mantle: Sensitivity tests using high-resolution steady-state subduction zone models. Journal of Geophysical Research: Solid Earth, 112(B4). https://doi.org/10.1029/2006JB004544

Kneller, Erik A., & van Keken, P. E. (2007). Trench-parallel flow and seismic anisotropy in the Mariana and Andean subduction systems. Nature, 450(7173), 1222–1225. https://doi.org/10.1038/nature06429

Lange, H., Casassa, G., Ivins, E. R., Schröder, L., Fritsche, M., Richter, A., Groh, A., & Dietrich, R. (2014). Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth models. Geophysical Research Letters, 41(3), 805–812. https://doi.org/10.1002/2013GL058419

Lebedev, S., & van der Hilst, R. D. (2008). Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms. Geophysical Journal International, 173(2), 505–518. https://doi.org/10.1111/j.1365-246X.2008.03721.x

Levin, V., Elkington, S., Bourke, J., Arroyo, I., & Linkimer, L. (2021). Seismic anisotropy in southern Costa Rica confirms upper mantle flow from the Pacific to the Caribbean. Geology, 49(1), 8–12. https://doi.org/10.1130/G47826.1

Long, M. D., & van der Hilst, R. D. (2006). Shear wave splitting from local events beneath the Ryukyu arc: Trench-parallel anisotropy in the mantle wedge. Physics of the Earth and Planetary Interiors, 155(3). https://doi.org/10.1016/j.pepi.2006.01.003

Lynner, C., & Beck, S. L. (2020). Subduction dynamics and structural controls on shear wave splitting along the South American convergent margin. Journal of South American Earth Sciences, 104. https://doi.org/10.1016/j.jsames.2020.102824

MacDougall, J. G., Kincaid, C., Szwaja, S., & Fischer, K. M. (2014). The impact of slab dip variations, gaps and rollback on mantle wedge flow: insights from fluids experiments. Geophysical Journal International, 197(2), 705–730. https://doi.org/10.1093/gji/ggu053

Magnani, M. B., Ito, E., Wiens, D., Wickert, A. D., Ivins, E. R., Fedotova, A., Van Wyk de Vries, M. S., Mark, H. F., & Penprase, S. B. (2020). Solid Earth response of the Patagonian Andes to post-Little Ice Age glacial retreat: a multi-pronged approach. AGU Fall Meeting Abstracts, G013-05. https://ui.adsabs.harvard.edu/abs/2020AGUFMG013...05M

Mallick, S., Kuhl, S. E., Saal, A. E., Klein, E. M., Bach, W., Monteleone, B. D., & Boesenberg, J. S. (2023). Evidence of South American lithosphere mantle beneath the Chile mid-ocean ridge. Earth and Planetary Science Letters, 620, 118320. https://doi.org/10.1016/j.epsl.2023.118320

Mark, Hannah F., Wiens, D. A., Ivins, E. R., Richter, A., Ben Mansour, W., Magnani, M. B., Marderwald, E., Adaros, R., & Barrientos, S. (2022). Lithospheric Erosion in the Patagonian Slab Window, and Implications for Glacial Isostasy. Geophysical Research Letters, 49(2). https://doi.org/10.1029/2021GL096863

Mark, H.F., Wiens, D. A., Ben Mansour, W., & Zhou, Z. (2025). Anisotropic Vsv model for the crust and upper mantle in southern Patagonia. https://doi.org/10.5281/zenodo.15097717

Montagner, J.-P., & Nataf, H.-C. (1986). A simple method for inverting the azimuthal anisotropy of surface waves. Journal of Geophysical Research: Solid Earth, 91(B1), 511–520. http://onlinelibrary.wiley.com/doi/10.1029/JB091iB01p00511/full

Mookherjee, M., & Capitani, G. C. (2011). Trench parallel anisotropy and large delay times: Elasticity and anisotropy of antigorite at high pressures. Geophysical Research Letters, 38(9). https://doi.org/10.1029/2011GL047160

Nakajima, J., & Hasegawa, A. (2004). Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northeastern Japan. Earth and Planetary Science Letters, 225(3). https://doi.org/10.1016/j.epsl.2004.06.011

Paige, C. C., & Saunders, M. A. (1982). LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Transactions on Mathematical Software, 8(1), 43–71. https://doi.org/10.1145/355984.355989

Peyton, V., Levin, V., Park, J., Brandon, M., Lees, J., Gordeev, E., & Ozerov, A. (2001). Mantle flow at a slab edge: Seismic anisotropy in the Kamchatka Region. Geophysical Research Letters, 28(2), 379–382. https://doi.org/10.1029/2000GL012200

Richter, A., Ivins, E. R., Lange, H., Mendoza, L., Schröder, L., Hormaechea, J. L., Casassa, G., Marderwald, E., Fritsche, M., Perdomo, R., Horwath, M., & Dietrich, R. (2016). Crustal deformation across the Southern Patagonian Icefield observed by GNSS. Earth and Planetary Science Letters, 452, 206–215. https://doi.org/10.1016/j.epsl.2016.07.042

Russo, R. M., Gallego, A., Comte, D., Mocanu, V. I., Murdie, R. E., & VanDecar, J. C. (2010). Source-side shear wave splitting and upper mantle flow in the Chile Ridge subduction region. Geology, 38(8), 707–710. https://doi.org/10.1130/G30920.1

Russo, R. M., Luo, H., Wang, K., Ambrosius, B., Mocanu, V., He, J., James, T., Bevis, M., & Fernandes, R. (2021). Lateral variation in slab window viscosity inferred from global navigation satellite system (GNSS)–observed uplift due to recent mass loss at Patagonia ice fields. Geology. https://doi.org/10.1130/G49388.1

Russo, R. M., & Silver, P. G. (1994). Trench-parallel Flow Beneath the Nazca Plate from Seismic Anisotropy. Science, 263(5150). https://doi.org/10.1126/science.263.5150.1105

Russo, R. M., VanDecar, J. C., Comte, D., Mocanu, V. I., Gallego, A., & Murdie, R. E. (2010). Subduction of the Chile Ridge: Upper mantle structure and flow. GSA Today, 4–10. https://doi.org/10.1130/GSATG61A.1

Sanhueza, J., Yáñez, G., Buck, W. R., Araya Vargas, J., & Veloso, E. (2023). Ridge Subduction: Unraveling the Consequences Linked to a Slab Window Development Beneath South America at the Chile Triple Junction. Geochemistry, Geophysics, Geosystems, 24(9), e2023GC010977. https://doi.org/10.1029/2023GC010977

Sanhueza, J., Yáñez, G., Buck, W. R., Sawant, A. D., Araya Vargas, J., & Lloyd, A. J. (2023). Towards linking slab window geodynamics with the geophysical and geochemical signature of the upper mantle. Earth and Planetary Science Letters, 623. https://doi.org/10.1016/j.epsl.2023.118435

Schaeffer, A. J., Lebedev, S., & Becker, T. W. (2016). Azimuthal seismic anisotropy in the Earth’s upper mantle and the thickness of tectonic plates. Geophysical Journal International, 207(2), 901–933. https://doi.org/10.1093/gji/ggw309

Schilling, M. E., Carlson, R. W., Tassara, A., Conceição, R. V., Bertotto, G. W., Vásquez, M., Muñoz, D., Jalowitzki, T., Gervasoni, F., & Morata, D. (2017). The origin of Patagonia revealed by Re-Os systematics of mantle xenoliths. Precambrian Research, 294. https://doi.org/10.1016/j.precamres.2017.03.008

Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., & Chandler, M. (2012). Global continental and ocean basin reconstructions since 200Ma. Earth-Science Reviews, 113(3–4). https://doi.org/10.1016/j.earscirev.2012.03.002

Shen, W., Ritzwoller, M. H., Schulte-Pelkum, V., & Lin, F.-C. (2013). Joint inversion of surface wave dispersion and receiver functions: a Bayesian Monte-Carlo approach. Geophysical Journal International, 192(2), 807–836. https://doi.org/10.1093/gji/ggs050

Skemer, P., & Hansen, L. N. (2016). Inferring upper-mantle flow from seismic anisotropy: An experimental perspective. Tectonophysics, 668–669, 1–14. https://doi.org/10.1016/j.tecto.2015.12.003

Smith, M. L., & Dahlen, F. A. (1973). The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. Journal of Geophysical Research, 78(17), 3321–3333. https://doi.org/10.1029/JB078i017p03321

Søager, N., Holm, P. M., Massaferro, G. I., Haller, M., & Traun, M. K. (2021). The Patagonian intraplate basalts: A reflection of the South Atlantic convection cell. Gondwana Research, 91. https://doi.org/10.1016/j.gr.2020.12.008

Stern, C. R., & Kilian, R. (1996). Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3). https://doi.org/10.1007/s004100050155

Thorkelson, D. J. (1996). Subduction of diverging plates and the principles of slab window formation. Tectonophysics, 255(1–2), 47–63. https://doi.org/10.1016/0040-1951(95)00106-9

Wagner, L. S., Fouch, M. J., James, D. E., & Long, M. D. (2013). The role of hydrous phases in the formation of trench parallel anisotropy: Evidence from Rayleigh waves in Cascadia. Geophysical Research Letters, 40(11). https://doi.org/10.1002/grl.50525

Wang, Z., & Dahlen, F. A. (1995). Spherical‐spline parameterization of three‐dimensional earth models. Geophysical Research Letters, 22(22), 3099–3102. https://doi.org/10.1029/95GL03080

Wu, Y., Liao, J., Guo, F., Wang, X., & Shen, Y. (2022). Styles of Trench‐Parallel Mid‐Ocean Ridge Subduction Affect Cenozoic Geological Evolution in Circum‐Pacific Continental Margins. Geophysical Research Letters, 49(8). https://doi.org/10.1029/2022GL098428

Zandt, G., & Humphreys, E. (2008). Toroidal mantle flow through the western U.S. slab window. Geology, 36(4), 295. https://doi.org/10.1130/G24611A.1

Zhou, Z., Wiens, D. A., Nyblade, A. A., Aster, R. C., Wilson, T., & Shen, W. (2024). Crustal and Uppermost Mantle Azimuthal Seismic Anisotropy of Antarctica From Ambient Noise Tomography. Journal of Geophysical Research: Solid Earth, 129(1), e2023JB027556. https://doi.org/10.1029/2023JB027556

Published

2025-07-11

How to Cite

Mark, H., Wiens, D., Ben Mansour, W., & Zhou, Z. (2025). Depth-varying azimuthal anisotropy and mantle flow in the Patagonian slab window. Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.1670

Issue

Section

Articles

Funding data