Depth-varying azimuthal anisotropy and mantle flow in the Patagonian slab window
DOI:
https://doi.org/10.26443/seismica.v4i2.1670Abstract
Subduction of spreading ridges forms slab windows which perturb the local structure and dynamics of the upper mantle. Slab windows may alter the pattern of mantle flow and serve as portals for the exchange of mantle material between upper mantle reservoirs that are otherwise separated by the boundary of the subducting slab. Here, we use Rayleigh waves to derive an azimuthally anisotropic regional seismic velocity model for the Patagonian slab window and use the anisotropy model to infer patterns of upper mantle flow and deformation. Anisotropic fast directions are primarily trench-parallel in the upper ~40 km of the mantle throughout the region, likely reflecting the history of subduction and compression along the South American margin. At greater depths sensed by long-period Rayleigh waves, fast directions within the youngest part of the slab window are consistent with cross-basin mantle flow between the Atlantic and Pacific, as previously suggested by shear wave splits. Overall, the anisotropic velocity model reveals complex, depth-dependent patterns of mantle deformation and flow within the Patagonian slab window.
References
Agurto-Detzel, H., Rietbrock, A., Bataille, K., Miller, M., Iwamori, H., & Priestley, K. (2014). Seismicity distribution in the vicinity of the Chile Triple Junction, Aysén Region, southern Chile. Journal of South American Earth Sciences, 51, 1–11. https://doi.org/10.1016/j.jsames.2013.12.011
Ávila, P., & Dávila, F. M. (2018). Heat flow and lithospheric thickness analysis in the Patagonian asthenospheric windows, southern South America. Tectonophysics, 747–748, 99–107. https://doi.org/10.1016/j.tecto.2018.10.006
Ben-Mansour, W., Wiens, D. A., Mark, H. F., Russo, R. M., Richter, A., Marderwald, E., & Barrientos, S. (2022). Mantle Flow Pattern Associated With the Patagonian Slab Window Determined From Azimuthal Anisotropy. Geophysical Research Letters, 49(18). https://doi.org/10.1029/2022GL099871
Bourgois, J., Lagabrielle, Y., Martin, H., Dyment, J., Frutos, J., & Cisternas, M. E. (2016). A Review on Forearc Ophiolite Obduction, Adakite-Like Generation, and Slab Window Development at the Chile Triple Junction Area: Uniformitarian Framework for Spreading-Ridge Subduction. Pure and Applied Geophysics, 173(10–11), 3217–3246. https://doi.org/10.1007/s00024-016-1317-9
Breitsprecher, K., & Thorkelson, D. J. (2009). Neogene kinematic history of Nazca–Antarctic–Phoenix slab windows beneath Patagonia and the Antarctic Peninsula. Tectonophysics, 464(1–4), 10–20. https://doi.org/10.1016/j.tecto.2008.02.013
Civello, S., & Margheriti, L. (2004). Toroidal mantle flow around the Calabrian slab (Italy) from SKS splitting. Geophysical Research Letters, 31(10). https://doi.org/10.1029/2004GL019607
Darbyshire, F. A., & Lebedev, S. (2009). Rayleigh wave phase-velocity heterogeneity and multilayered azimuthal anisotropy of the Superior Craton, Ontario. Geophysical Journal International, 176(1), 215–234. https://doi.org/10.1111/j.1365-246X.2008.03982.x
DeLong, S. E., Schwarz, W. M., & Anderson, R. N. (1979). Thermal effects of ridge subduction. Earth and Planetary Science Letters, 44(2), 239–246. https://doi.org/10.1016/0012-821X(79)90172-9
Eakin, C. M., Obrebski, M., Allen, R. M., Boyarko, D. C., Brudzinski, M. R., & Porritt, R. (2010). Seismic anisotropy beneath Cascadia and the Mendocino triple junction: Interaction of the subducting slab with mantle flow. Earth and Planetary Science Letters, 297(3–4), 627–632. https://doi.org/10.1016/j.epsl.2010.07.015
Gallego, A., Panning, M. P., Russo, R. M., Comte, D., Mocanu, V. I., Murdie, R. E., & Vandecar, J. C. (2011). Azimuthal anisotropy in the Chile Ridge subduction region retrieved from ambient noise. Lithosphere, 3(6). https://doi.org/10.1130/L139.1
Guest, I. A., Saal, A. E., Mallick, S., Gorring, M. L., & Kay, S. M. (2024). The Volcanism of the Meseta del Lago Buenos Aires, Patagonia: the Transition from Subduction to Slab Window. Journal of Petrology, 65(6). https://doi.org/10.1093/petrology/egae052
Guillaume, B., Moroni, M., Funiciello, F., Martinod, J., & Faccenna, C. (2010). Mantle flow and dynamic topography associated with slab window opening: Insights from laboratory models. Tectonophysics, 496(1). https://doi.org/10.1016/j.tecto.2010.10.014
Hollyday, A., Austermann, J., Lloyd, A., Hoggard, M., Richards, F., & Rovere, A. (2023). A Revised Estimate of Early Pliocene Global Mean Sea Level Using Geodynamic Models of the Patagonian Slab Window. Geochemistry, Geophysics, Geosystems, 24(2). https://doi.org/10.1029/2022GC010648
Husson, L., Conrad, C. P., & Faccenna, C. (2012). Plate motions, Andean orogeny, and volcanism above the South Atlantic convection cell. Earth and Planetary Science Letters, 317–318, 126–135. https://doi.org/10.1016/j.epsl.2011.11.040
Jadamec, M. A., & Billen, M. I. (2010). Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge. Nature, 465(7296), 338–341. https://doi.org/10.1038/nature09053
Karato, S., Jung, H., Katayama, I., & Skemer, P. (2008). Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annual Review of Earth and Planetary Sciences, 36(1), 59–95. https://doi.org/10.1146/annurev.earth.36.031207.124120
Katayama, I., Hirauchi, K., Michibayashi, K., & Ando, J. (2009). Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature, 461(7267), 1114–1117. https://doi.org/10.1038/nature08513
Király, Á., Capitanio, F. A., Funiciello, F., & Faccenna, C. (2017). Subduction induced mantle flow: Length-scales and orientation of the toroidal cell. Earth and Planetary Science Letters, 479, 284–297. https://doi.org/10.1016/j.epsl.2017.09.017
Kneller, E. A., van Keken, P. E., Katayama, I., & Karato, S. (2007). Stress, strain, and B-type olivine fabric in the fore-arc mantle: Sensitivity tests using high-resolution steady-state subduction zone models. Journal of Geophysical Research: Solid Earth, 112(B4). https://doi.org/10.1029/2006JB004544
Kneller, Erik A., & van Keken, P. E. (2007). Trench-parallel flow and seismic anisotropy in the Mariana and Andean subduction systems. Nature, 450(7173), 1222–1225. https://doi.org/10.1038/nature06429
Lange, H., Casassa, G., Ivins, E. R., Schröder, L., Fritsche, M., Richter, A., Groh, A., & Dietrich, R. (2014). Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth models. Geophysical Research Letters, 41(3), 805–812. https://doi.org/10.1002/2013GL058419
Lebedev, S., & van der Hilst, R. D. (2008). Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms. Geophysical Journal International, 173(2), 505–518. https://doi.org/10.1111/j.1365-246X.2008.03721.x
Levin, V., Elkington, S., Bourke, J., Arroyo, I., & Linkimer, L. (2021). Seismic anisotropy in southern Costa Rica confirms upper mantle flow from the Pacific to the Caribbean. Geology, 49(1), 8–12. https://doi.org/10.1130/G47826.1
Long, M. D., & van der Hilst, R. D. (2006). Shear wave splitting from local events beneath the Ryukyu arc: Trench-parallel anisotropy in the mantle wedge. Physics of the Earth and Planetary Interiors, 155(3). https://doi.org/10.1016/j.pepi.2006.01.003
Lynner, C., & Beck, S. L. (2020). Subduction dynamics and structural controls on shear wave splitting along the South American convergent margin. Journal of South American Earth Sciences, 104. https://doi.org/10.1016/j.jsames.2020.102824
MacDougall, J. G., Kincaid, C., Szwaja, S., & Fischer, K. M. (2014). The impact of slab dip variations, gaps and rollback on mantle wedge flow: insights from fluids experiments. Geophysical Journal International, 197(2), 705–730. https://doi.org/10.1093/gji/ggu053
Magnani, M. B., Ito, E., Wiens, D., Wickert, A. D., Ivins, E. R., Fedotova, A., Van Wyk de Vries, M. S., Mark, H. F., & Penprase, S. B. (2020). Solid Earth response of the Patagonian Andes to post-Little Ice Age glacial retreat: a multi-pronged approach. AGU Fall Meeting Abstracts, G013-05. https://ui.adsabs.harvard.edu/abs/2020AGUFMG013...05M
Mallick, S., Kuhl, S. E., Saal, A. E., Klein, E. M., Bach, W., Monteleone, B. D., & Boesenberg, J. S. (2023). Evidence of South American lithosphere mantle beneath the Chile mid-ocean ridge. Earth and Planetary Science Letters, 620, 118320. https://doi.org/10.1016/j.epsl.2023.118320
Mark, Hannah F., Wiens, D. A., Ivins, E. R., Richter, A., Ben Mansour, W., Magnani, M. B., Marderwald, E., Adaros, R., & Barrientos, S. (2022). Lithospheric Erosion in the Patagonian Slab Window, and Implications for Glacial Isostasy. Geophysical Research Letters, 49(2). https://doi.org/10.1029/2021GL096863
Mark, H.F., Wiens, D. A., Ben Mansour, W., & Zhou, Z. (2025). Anisotropic Vsv model for the crust and upper mantle in southern Patagonia. https://doi.org/10.5281/zenodo.15097717
Montagner, J.-P., & Nataf, H.-C. (1986). A simple method for inverting the azimuthal anisotropy of surface waves. Journal of Geophysical Research: Solid Earth, 91(B1), 511–520. http://onlinelibrary.wiley.com/doi/10.1029/JB091iB01p00511/full
Mookherjee, M., & Capitani, G. C. (2011). Trench parallel anisotropy and large delay times: Elasticity and anisotropy of antigorite at high pressures. Geophysical Research Letters, 38(9). https://doi.org/10.1029/2011GL047160
Nakajima, J., & Hasegawa, A. (2004). Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northeastern Japan. Earth and Planetary Science Letters, 225(3). https://doi.org/10.1016/j.epsl.2004.06.011
Paige, C. C., & Saunders, M. A. (1982). LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Transactions on Mathematical Software, 8(1), 43–71. https://doi.org/10.1145/355984.355989
Peyton, V., Levin, V., Park, J., Brandon, M., Lees, J., Gordeev, E., & Ozerov, A. (2001). Mantle flow at a slab edge: Seismic anisotropy in the Kamchatka Region. Geophysical Research Letters, 28(2), 379–382. https://doi.org/10.1029/2000GL012200
Richter, A., Ivins, E. R., Lange, H., Mendoza, L., Schröder, L., Hormaechea, J. L., Casassa, G., Marderwald, E., Fritsche, M., Perdomo, R., Horwath, M., & Dietrich, R. (2016). Crustal deformation across the Southern Patagonian Icefield observed by GNSS. Earth and Planetary Science Letters, 452, 206–215. https://doi.org/10.1016/j.epsl.2016.07.042
Russo, R. M., Gallego, A., Comte, D., Mocanu, V. I., Murdie, R. E., & VanDecar, J. C. (2010). Source-side shear wave splitting and upper mantle flow in the Chile Ridge subduction region. Geology, 38(8), 707–710. https://doi.org/10.1130/G30920.1
Russo, R. M., Luo, H., Wang, K., Ambrosius, B., Mocanu, V., He, J., James, T., Bevis, M., & Fernandes, R. (2021). Lateral variation in slab window viscosity inferred from global navigation satellite system (GNSS)–observed uplift due to recent mass loss at Patagonia ice fields. Geology. https://doi.org/10.1130/G49388.1
Russo, R. M., & Silver, P. G. (1994). Trench-parallel Flow Beneath the Nazca Plate from Seismic Anisotropy. Science, 263(5150). https://doi.org/10.1126/science.263.5150.1105
Russo, R. M., VanDecar, J. C., Comte, D., Mocanu, V. I., Gallego, A., & Murdie, R. E. (2010). Subduction of the Chile Ridge: Upper mantle structure and flow. GSA Today, 4–10. https://doi.org/10.1130/GSATG61A.1
Sanhueza, J., Yáñez, G., Buck, W. R., Araya Vargas, J., & Veloso, E. (2023). Ridge Subduction: Unraveling the Consequences Linked to a Slab Window Development Beneath South America at the Chile Triple Junction. Geochemistry, Geophysics, Geosystems, 24(9), e2023GC010977. https://doi.org/10.1029/2023GC010977
Sanhueza, J., Yáñez, G., Buck, W. R., Sawant, A. D., Araya Vargas, J., & Lloyd, A. J. (2023). Towards linking slab window geodynamics with the geophysical and geochemical signature of the upper mantle. Earth and Planetary Science Letters, 623. https://doi.org/10.1016/j.epsl.2023.118435
Schaeffer, A. J., Lebedev, S., & Becker, T. W. (2016). Azimuthal seismic anisotropy in the Earth’s upper mantle and the thickness of tectonic plates. Geophysical Journal International, 207(2), 901–933. https://doi.org/10.1093/gji/ggw309
Schilling, M. E., Carlson, R. W., Tassara, A., Conceição, R. V., Bertotto, G. W., Vásquez, M., Muñoz, D., Jalowitzki, T., Gervasoni, F., & Morata, D. (2017). The origin of Patagonia revealed by Re-Os systematics of mantle xenoliths. Precambrian Research, 294. https://doi.org/10.1016/j.precamres.2017.03.008
Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., & Chandler, M. (2012). Global continental and ocean basin reconstructions since 200Ma. Earth-Science Reviews, 113(3–4). https://doi.org/10.1016/j.earscirev.2012.03.002
Shen, W., Ritzwoller, M. H., Schulte-Pelkum, V., & Lin, F.-C. (2013). Joint inversion of surface wave dispersion and receiver functions: a Bayesian Monte-Carlo approach. Geophysical Journal International, 192(2), 807–836. https://doi.org/10.1093/gji/ggs050
Skemer, P., & Hansen, L. N. (2016). Inferring upper-mantle flow from seismic anisotropy: An experimental perspective. Tectonophysics, 668–669, 1–14. https://doi.org/10.1016/j.tecto.2015.12.003
Smith, M. L., & Dahlen, F. A. (1973). The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. Journal of Geophysical Research, 78(17), 3321–3333. https://doi.org/10.1029/JB078i017p03321
Søager, N., Holm, P. M., Massaferro, G. I., Haller, M., & Traun, M. K. (2021). The Patagonian intraplate basalts: A reflection of the South Atlantic convection cell. Gondwana Research, 91. https://doi.org/10.1016/j.gr.2020.12.008
Stern, C. R., & Kilian, R. (1996). Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3). https://doi.org/10.1007/s004100050155
Thorkelson, D. J. (1996). Subduction of diverging plates and the principles of slab window formation. Tectonophysics, 255(1–2), 47–63. https://doi.org/10.1016/0040-1951(95)00106-9
Wagner, L. S., Fouch, M. J., James, D. E., & Long, M. D. (2013). The role of hydrous phases in the formation of trench parallel anisotropy: Evidence from Rayleigh waves in Cascadia. Geophysical Research Letters, 40(11). https://doi.org/10.1002/grl.50525
Wang, Z., & Dahlen, F. A. (1995). Spherical‐spline parameterization of three‐dimensional earth models. Geophysical Research Letters, 22(22), 3099–3102. https://doi.org/10.1029/95GL03080
Wu, Y., Liao, J., Guo, F., Wang, X., & Shen, Y. (2022). Styles of Trench‐Parallel Mid‐Ocean Ridge Subduction Affect Cenozoic Geological Evolution in Circum‐Pacific Continental Margins. Geophysical Research Letters, 49(8). https://doi.org/10.1029/2022GL098428
Zandt, G., & Humphreys, E. (2008). Toroidal mantle flow through the western U.S. slab window. Geology, 36(4), 295. https://doi.org/10.1130/G24611A.1
Zhou, Z., Wiens, D. A., Nyblade, A. A., Aster, R. C., Wilson, T., & Shen, W. (2024). Crustal and Uppermost Mantle Azimuthal Seismic Anisotropy of Antarctica From Ambient Noise Tomography. Journal of Geophysical Research: Solid Earth, 129(1), e2023JB027556. https://doi.org/10.1029/2023JB027556
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hannah Mark, Douglas Wiens, Walid Ben Mansour, Zhengyang Zhou

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
National Science Foundation
Grant numbers EAR-1714154