Spatially heterogenous Holocene slip rates drive seismic sequence variability on normal faults
DOI:
https://doi.org/10.26443/seismica.v4i2.1682Keywords:
Earthquake, Numerical modelling, seismic hazard analysis, ApenninesAbstract
Spatial variations in long-term (e.g. Holocene) slip rates along faults are a source of uncertainty in fault-based seismic hazard assessment (SHA), but their effect on seismicity rates and magnitude-frequency distributions remains underexplored. We conduct numerical simulations of earthquake cycles on the Parasano-Pescina normal fault in Central Italy, using multiple along-strike slip rate measurements, to investigate how spatial variations in slip rate influence slip modes, rupture extent, seismicity rates and magnitudes. We compared synthetic catalogs generated using different profiles with variable slip rates with those based on a single measurement and estimated associated ground-shaking intensities. Profiles with variable slip rate affect earthquake magnitude and recurrence by modulating stress accumulation. Highly variable slip rate profiles lead to more complex rupture patterns, including partial ruptures and slow slip events, contributing to variability in stress distribution in earthquake recurrence, magnitude-frequency distributions and ground-shaking intensities. Simplified slip rate profiles based on a single measurement produce less realistic seismic catalogues with earthquakes of characteristic magnitude and regular recurrence. This highlights the need for detailed profiles to improve SHA, particularly for faults with relatively limited rate-and-state weakening behavior and sharp along-strike gradients in long-term slip rate.
References
Allam, A. A., Kroll, K. A., Milliner, C. W. D., & Richards‐Dinger, K. B. (2019). Effects of Fault Roughness on Coseismic Slip and Earthquake Locations. Journal of Geophysical Research: Solid Earth, 124(11), 11336–11349. https://doi.org/10.1029/2018jb016216
Avouac, J.-P. (2015). From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle. Annual Review of Earth and Planetary Sciences, 43(1), 233–271. https://doi.org/10.1146/annurev-earth-060614-105302
Barbot, S. (2019). Slow-slip, slow earthquakes, period-two cycles, full and partial ruptures, and deterministic chaos in a single asperity fault. Tectonophysics, 768, 228171. https://doi.org/10.1016/j.tecto.2019.228171
Bindi, D., Pacor, F., Luzi, L., Puglia, R., Massa, M., Ameri, G., & Paolucci, R. (2011). Ground motion prediction equations derived from the Italian strong motion database. Bulletin of Earthquake Engineering, 9(6), 1899–1920. https://doi.org/10.1007/s10518-011-9313-z
Boschi, E., Gasperini, P., & Mulargia, F. (1995). Forecasting where larger crustal earthquakes are likely to occur in Italy in the near future. Bulletin of the Seismological Society of America, 85(5), 1475–1482. https://doi.org/10.1785/BSSA0850051475
Brune, J. N. (1968). Seismic moment, seismicity, and rate of slip along major fault zones. Journal of Geophysical Research, 73(2), 777–784. https://doi.org/10.1029/jb073i002p00777
Cappa, F., Perrin, C., Manighetti, I., & Delor, E. (2014). Off-fault long-term damage: A condition to account for generic, triangular earthquake slip profiles. Geochemistry, Geophysics, Geosystems, 15(4), 1476–1493. https://doi.org/10.1002/2013gc005182
Cartwright, J. A., Trudgill, B. D., & Mansfield, C. S. (1995). Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah. Journal of Structural Geology, 17(9), 1319–1326. https://doi.org/10.1016/0191-8141(95)00033-a
Cattania, C. (2019). Complex Earthquake Sequences On Simple Faults. Geophysical Research Letters, 46(17–18), 10384–10393. https://doi.org/10.1029/2019gl083628
Chartier, T., Scotti, O., Clément, C., Jomard, H., & Baize, S. (2017). Transposing an active fault database into a fault-based seismic hazard assessment for nuclear facilities – Part 2: Impact of fault parameter uncertainties on a site-specific PSHA exercise in the Upper Rhine Graben, eastern France. Natural Hazards and Earth System Sciences, 17(9), 1585–1593. https://doi.org/10.5194/nhess-17-1585-2017
Chartier, T., Scotti, O., & Lyon‐Caen, H. (2019). SHERIFS: Open‐Source Code for Computing Earthquake Rates in Fault Systems and Constructing Hazard Models. Seismological Research Letters. https://doi.org/10.1785/0220180332
Chen, J., & Spiers, C. J. (2016). Rate and state frictional and healing behavior of carbonate fault gouge explained using microphysical model. Journal of Geophysical Research: Solid Earth, 121(12), 8642–8665. https://doi.org/10.1002/2016jb013470
Chiaraluce, L., Michele, M., Waldhauser, F., Tan, Y. J., Herrmann, M., Spallarossa, D., Beroza, G. C., Cattaneo, M., Chiarabba, C., De Gori, P., Di Stefano, R., Ellsworth, W., Main, I., Mancini, S., Margheriti, L., Marzocchi, W., Meier, M.-A., Scafidi, D., Schaff, D., & Segou, M. (2022). A comprehensive suite of earthquake catalogues for the 2016-2017 Central Italy seismic sequence. Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01827-z
Cowie, P. A., Roberts, G. P., Bull, J. M., & Visini, F. (2012). Relationships between fault geometry, slip rate variability and earthquake recurrence in extensional settings. Geophysical Journal International, 189(1), 143–160. https://doi.org/10.1111/j.1365-246x.2012.05378.x
Cowie, P. A., & Scholz, C. H. (1992). Growth of faults by accumulation of seismic slip. Journal of Geophysical Research: Solid Earth, 97(B7), 11085–11095. https://doi.org/10.1029/92jb00586
Cowie, P. A., Scholz, C. H., Roberts, G. P., Faure Walker, J. P., & Steer, P. (2013). Viscous roots of active seismogenic faults revealed by geologic slip rate variations. Nature Geoscience, 6(12), 1036–1040. https://doi.org/10.1038/ngeo1991
Delogkos, E., Howell, A., Seebeck, H., Shaw, B. E., Nicol, A., Mika Liao, Y., & Walsh, J. J. (2023). Impact of Variable Fault Geometries and Slip Rates on Earthquake Catalogs From Physics‐Based Simulations of a Normal Fault. Journal of Geophysical Research: Solid Earth, 128(11). https://doi.org/10.1029/2023jb026746
Delogkos, E., Saqab, M. M., Walsh, J. J., Roche, V., & Childs, C. (2020). Throw variations and strain partitioning associated with fault-bend folding along normal faults. Solid Earth, 11(3), 935–945. https://doi.org/10.5194/se-11-935-2020
Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research: Solid Earth, 84(B5), 2161–2168. https://doi.org/10.1029/jb084ib05p02161
Dieterich, J. H., & Smith, D. E. (2009). Nonplanar Faults: Mechanics of Slip and Off-fault Damage. In Mechanics, Structure and Evolution of Fault Zones (pp. 1799–1815). Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0138-2_12
Faure Walker, J., Boncio, P., Pace, B., Roberts, G., Benedetti, L., Scotti, O., Visini, F., & Peruzza, L. (2021). Fault2SHA Central Apennines database and structuring active fault data for seismic hazard assessment. Scientific Data, 8(1). https://doi.org/10.1038/s41597-021-00868-0
Faure Walker, J. P., Roberts, G. P., Cowie, P. A., Papanikolaou, I. D., Sammonds, P. R., Michetti, A. M., & Phillips, R. J. (2009). Horizontal strain-rates and throw-rates across breached relay zones, central Italy: Implications for the preservation of throw deficits at points of normal fault linkage. Journal of Structural Geology, 31(10), 1145–1160. https://doi.org/10.1016/j.jsg.2009.06.011
Faure Walker, J. P., Visini, F., Roberts, G., Galasso, C., McCaffrey, K., & Mildon, Z. (2018). Variable Fault Geometry Suggests Detailed Fault‐Slip‐Rate Profiles and Geometries Are Needed for Fault‐Based Probabilistic Seismic Hazard Assessment (PSHA). Bulletin of the Seismological Society of America, 109(1), 110–123. https://doi.org/10.1785/0120180137
Field, E. H., Arrowsmith, R. J., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., Jackson, D. D., Johnson, K. M., Jordan, T. H., Madden, C., Michael, A. J., Milner, K. R., Page, M. T., Parsons, T., Powers, P. M., Shaw, B. E., Thatcher, W. R., Weldon, R. J., & Zeng, Y. (2014). Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3)–The Time-Independent Model. Bulletin of the Seismological Society of America, 104(3), 1122–1180. https://doi.org/10.1785/0120130164
Field, E. H., Jackson, D. D., & Dolan, J. F. (1999). A mutually consistent seismic-hazard source model for southern California. Bulletin of the Seismological Society of America, 89(3), 559–578. https://doi.org/10.1785/bssa0890030559
Finocchio, D., Barba, S., & Basili, R. (2016). Slip rate depth distribution for active faults in Central Italy using numerical models. Tectonophysics, 687, 232–244. https://doi.org/10.1016/j.tecto.2016.07.031
Gerstenberger, M. C., Marzocchi, W., Allen, T., Pagani, M., Adams, J., Danciu, L., Field, E. H., Fujiwara, H., Luco, N., Ma, K. ‐F., Meletti, C., & Petersen, M. D. (2020). Probabilistic Seismic Hazard Analysis at Regional and National Scales: State of the Art and Future Challenges. Reviews of Geophysics, 58(2). https://doi.org/10.1029/2019rg000653
Gerstenberger, M. C., Van Dissen, R., Rollins, C., DiCaprio, C., Thingbaijim, K. K. S., Bora, S., Chamberlain, C., Christophersen, A., Coffey, G. L., Ellis, S. M., Iturrieta, P., Johnson, K. M., Litchfield, N. J., Nicol, A., Milner, K. R., Rastin, S. J., Rhoades, D., Seebeck, H., Shaw, B. E., … Williams, C. (2024). The Seismicity Rate Model for the 2022 Aotearoa New Zealand National Seismic Hazard Model. Bulletin of the Seismological Society of America, 114(1), 182–216. https://doi.org/10.1785/0120230165
Gómez-Novell, O., Chartier, T., García-Mayordomo, J., Ortuño, M., Masana, E., Insua-Arévalo, J. M., & Scotti, O. (2020). Modelling earthquake rupture rates in fault systems for seismic hazard assessment: The Eastern Betics Shear Zone. Engineering Geology, 265, 105452. https://doi.org/10.1016/j.enggeo.2019.105452
Gómez-Novell, O., García-Mayordomo, J., Ortuño, M., Masana, E., & Chartier, T. (2020). Fault System-Based Probabilistic Seismic Hazard Assessment of a Moderate Seismicity Region: The Eastern Betics Shear Zone (SE Spain). Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.579398
Gupta, A., & Scholz, C. H. (2000). A model of normal fault interaction based on observations and theory. Journal of Structural Geology, 22(7), 865–879. https://doi.org/10.1016/s0191-8141(00)00011-0
Heimisson, E. R. (2020). Crack to pulse transition and magnitude statistics during earthquake cycles on a self-similar rough fault. Earth and Planetary Science Letters, 537, 116202. https://doi.org/10.1016/j.epsl.2020.116202
Hergert, T., & Heidbach, O. (2010). Slip-rate variability and distributed deformation in the Marmara Sea fault system. Nature Geoscience, 3(2), 132–135. https://doi.org/10.1038/ngeo739
Herrero-Barbero, P., Álvarez-Gómez, J. A., Tsige, M., & Martínez-Díaz, J. J. (2023). Deterministic seismic hazard analysis from physics-based earthquake simulations in the Eastern Betics (SE Iberia). Engineering Geology, 327, 107364. https://doi.org/10.1016/j.enggeo.2023.107364
Iezzi, F., Mildon, Z., Walker, J. F., Roberts, G., Goodall, H., Wilkinson, M., & Robertson, J. (2018). Coseismic Throw Variation Across Along‐Strike Bends on Active Normal Faults: Implications for Displacement Versus Length Scaling of Earthquake Ruptures. Journal of Geophysical Research: Solid Earth, 123(11), 9817–9841. https://doi.org/10.1029/2018jb016732
Kim, Y.-S., & Sanderson, D. J. (2005). The relationship between displacement and length of faults: a review. Earth-Science Reviews, 68(3–4), 317–334. https://doi.org/10.1016/j.earscirev.2004.06.003
Luo, Y., Ampuero, J. P., Galvez, P., Van Den Ende, M., & Idini, B. (2017). QDYN: a Quasi-DYNamic earthquake simulator (v1.1). Zenodo. https://doi.org/10.5281/ZENODO.322459
Manighetti, I., Campillo, M., Sammis, C., Mai, P. M., & King, G. (2005). Evidence for self‐similar, triangular slip distributions on earthquakes: Implications for earthquake and fault mechanics. Journal of Geophysical Research: Solid Earth, 110(B5). https://doi.org/10.1029/2004jb003174
Manighetti, I., King, G. C. P., Gaudemer, Y., Scholz, C. H., & Doubre, C. (2001). Slip accumulation and lateral propagation of active normal faults in Afar. Journal of Geophysical Research: Solid Earth, 106(B7), 13667–13696. https://doi.org/10.1029/2000jb900471
Manzocchi, T., Walsh, J. J., & Nicol, A. (2006). Displacement accumulation from earthquakes on isolated normal faults. Journal of Structural Geology, 28(9), 1685–1693. https://doi.org/10.1016/j.jsg.2006.06.006
Marone, C. (1998). LABORATORY-DERIVED FRICTION LAWS AND THEIR APPLICATION TO SEISMIC FAULTING. Annual Review of Earth and Planetary Sciences, 26(1), 643–696. https://doi.org/10.1146/annurev.earth.26.1.643
Mildon, Z. K., Diercks, M., Roberts, G. P., Faure Walker, J. P., Ganas, A., Papanikolaou, I., Sakas, V., Robertson, J., Sgambato, C., & Mitchell, S. (2024). Transient Aseismic Vertical Deformation Across the Steeply‐Dipping Pisia‐Skinos Normal Fault (Gulf of Corinth, Greece). Tectonics, 43(8). https://doi.org/10.1029/2024tc008276
Mildon, Z. K., Roberts, G. P., Faure Walker, J. P., Beck, J., Papanikolaou, I., Michetti, A. M., Toda, S., Iezzi, F., Campbell, L., McCaffrey, K. J. W., Shanks, R., Sgambato, C., Robertson, J., Meschis, M., & Vittori, E. (2022). Surface faulting earthquake clustering controlled by fault and shear-zone interactions. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-34821-5
Milner, K. R., Shaw, B. E., Goulet, C. A., Richards-Dinger, K. B., Callaghan, S., Jordan, T. H., Dieterich, J. H., & Field, E. H. (2021). Toward Physics-Based Nonergodic PSHA: A Prototype Fully Deterministic Seismic Hazard Model for Southern California. Bulletin of the Seismological Society of America, 111(2), 898–915. https://doi.org/10.1785/0120200216
Nicol, A., Watterson, J., Walsh, J. J., & Childs, C. (1996). The shapes, major axis orientations and displacement patterns of fault surfaces. Journal of Structural Geology, 18(2–3), 235–248. https://doi.org/10.1016/s0191-8141(96)80047-2
Niroula, G. P., Stirling, M. W., Williams, J., & Gerstenberger, M. (2025). Testing and Evaluation of the First-Generation Earthquake Rupture Simulations for New Zealand. Bulletin of the Seismological Society of America, 115(5), 2263–2278. https://doi.org/10.1785/0120250006
Nixon, C. W., Sanderson, D. J., Dee, S. J., Bull, J. M., Humphreys, R. J., & Swanson, M. H. (2014). Fault interactions and reactivation within a normal-fault network at Milne Point, Alaska. AAPG Bulletin, 98(10), 2081–2107. https://doi.org/10.1306/04301413177
Pace, B., Visini, F., & Peruzza, L. (2016). FiSH: MATLAB Tools to Turn Fault Data into Seismic‐Hazard Models. Seismological Research Letters, 87(2A), 374–386. https://doi.org/10.1785/0220150189
Peacock, D. C. P., & Sanderson, D. J. (1991). Displacements, segment linkage and relay ramps in normal fault zones. Journal of Structural Geology, 13(6), 721–733. https://doi.org/10.1016/0191-8141(91)90033-f
Perez‐Silva, A., Kaneko, Y., Savage, M., Wallace, L., Li, D., & Williams, C. (2022). Segmentation of Shallow Slow Slip Events at the Hikurangi Subduction Zone Explained by Along‐Strike Changes in Fault Geometry and Plate Convergence Rates. Journal of Geophysical Research: Solid Earth, 127(1). https://doi.org/10.1029/2021jb022913
Perrin, C., Manighetti, I., Ampuero, J., Cappa, F., & Gaudemer, Y. (2016). Location of largest earthquake slip and fast rupture controlled by along‐strike change in fault structural maturity due to fault growth. Journal of Geophysical Research: Solid Earth, 121(5), 3666–3685. https://doi.org/10.1002/2015jb012671
Phillips, T. B., Jackson, C. A.-L., Bell, R. E., Duffy, O. B., & Fossen, H. (2016). Reactivation of intrabasement structures during rifting: A case study from offshore southern Norway. Journal of Structural Geology, 91, 54–73. https://doi.org/10.1016/j.jsg.2016.08.008
Q.G.I.S.Development Team. (2009). QGIS Geographic Information System. Open Source Geospatial Foundation. http://qgis.osgeo.org
Rafiei, M., Khodaverdian, A., & Rahimian, M. (2022). A Probabilistic Physics-Based Seismic Hazard Model for the Alborz Region, Iran. Bulletin of the Seismological Society of America, 112(4), 2141–2155. https://doi.org/10.1785/0120210238
Ragon, T., Sladen, A., & Simons, M. (2019). Accounting for uncertain fault geometry in earthquake source inversions – II: application to the Mw 6.2 Amatrice earthquake, central Italy. Geophysical Journal International, 218(1), 689–707. https://doi.org/10.1093/gji/ggz180
Roberts, G. P. (2007). Fault orientation variations along the strike of active normal fault systems in Italy and Greece: Implications for predicting the orientations of subseismic-resolution faults in hydrocarbon reservoirs. AAPG Bulletin, 91(1), 1–20. https://doi.org/10.1306/08300605146
Rodriguez Piceda, C. (2025). 3D seismic cycle model with variable slip-rate and hazard calculations. Zenodo. https://doi.org/10.5281/ZENODO.16409390
Ruina, A. (1983). Slip instability and state variable friction laws. Journal of Geophysical Research: Solid Earth, 88(B12), 10359–10370. https://doi.org/10.1029/jb088ib12p10359
Savage, J. C. (1983). A dislocation model of strain accumulation and release at a subduction zone. Journal of Geophysical Research: Solid Earth, 88(B6), 4984–4996. https://doi.org/10.1029/jb088ib06p04984
Scognamiglio, L., Tinti, E., Casarotti, E., Pucci, S., Villani, F., Cocco, M., Magnoni, F., Michelini, A., & Dreger, D. (2018). Complex Fault Geometry and Rupture Dynamics of the MW 6.5, 30 October 2016, Central Italy Earthquake. Journal of Geophysical Research: Solid Earth, 123(4), 2943–2964. https://doi.org/10.1002/2018jb015603
Shaw, B. E. (2019). Beyond Backslip: Improvement of Earthquake Simulators from New Hybrid Loading Conditions. Bulletin of the Seismological Society of America, 109(6), 2159–2167. https://doi.org/10.1785/0120180128
Shaw, B. E., Milner, K. R., Field, E. H., Richards-Dinger, K., Gilchrist, J. J., Dieterich, J. H., & Jordan, T. H. (2018). A physics-based earthquake simulator replicates seismic hazard statistics across California. Science Advances, 4(8). https://doi.org/10.1126/sciadv.aau0688
Sieh, K. E. (1978). Prehistoric large earthquakes produced by slip on the San Andreas Fault at Pallett Creek, California. Journal of Geophysical Research: Solid Earth, 83(B8), 3907–3939. https://doi.org/10.1029/jb083ib08p03907
Tapponnier, P., Ryerson, F. J., Van der Woerd, J., Mériaux, A.-S., & Lasserre, C. (2001). Long-term slip rates and characteristic slip: keys to active fault behaviour and earthquake hazard. Comptes Rendus de l’Académie Des Sciences - Series IIA - Earth and Planetary Science, 333(9), 483–494. https://doi.org/10.1016/s1251-8050(01)01668-8
Tarquini, S., Isola, I., Favalli, M., Battistini, A., & Dotta, G. (2023). TINITALY, a digital elevation model of Italy with a 10 meters cell size, version 1.1. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/TINITALY/1.1
Tarquini, S., Isola, I., Favalli, M., Mazzarini, F., Bisson, M., Pareschi, M. T., & Boschi, E. (2007). TINITALY/01: a new Triangular Irregular Network of Italy. Annals of Geophysics, 50(3), 407–425. https://doi.org/10.4401/ag-4424
Tavakolizadeh, N., Mohammadigheymasi, H., Visini, F., & Pombo, N. (2024). FaultQuake: An open-source Python tool for estimating Seismic Activity Rates in faults. Computers & Geosciences, 191, 105659. https://doi.org/10.1016/j.cageo.2024.105659
Valentini, A., Visini, F., & Pace, B. (2017). Integrating faults and past earthquakes into a probabilistic seismic hazard model for peninsular Italy. Natural Hazards and Earth System Sciences, 17(11), 2017–2039. https://doi.org/10.5194/nhess-17-2017-2017
Wang, B., & Barbot, S. (2024). Rupture segmentation on the East Anatolian fault (Turkey) controlled by along-strike variations in long-term slip rates in a structurally complex fault system. Geology, 52(10), 779–783. https://doi.org/10.1130/g52403.1
Wedmore, L. N. J., Faure Walker, J. P., Roberts, G. P., Sammonds, P. R., McCaffrey, K. J. W., & Cowie, P. A. (2017). A 667 year record of coseismic and interseismic Coulomb stress changes in central Italy reveals the role of fault interaction in controlling irregular earthquake recurrence intervals. Journal of Geophysical Research: Solid Earth, 122(7), 5691–5711. https://doi.org/10.1002/2017jb014054
Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002. https://doi.org/10.1785/bssa0840040974
Williams, J. N., Werner, M. J., Goda, K., Wedmore, L. N. J., De Risi, R., Biggs, J., Mdala, H., Dulanya, Z., Fagereng, A., Mphepo, F., & Chindandali, P. (2023). Fault-based probabilistic seismic hazard analysis in regions with low strain rates and a thick seismogenic layer: a case study from Malawi. Geophysical Journal International, 233(3), 2172–2207. https://doi.org/10.1093/gji/ggad060
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Constanza Rodriguez Piceda, Zoë Mildon, Billy James Andrews, Francesco Visini, Jean Paul Ampuero, Martijn van den Ende

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
UK Research and Innovation
Grant numbers Quake4D (MR/T041994/1)