Retrieval of body waves with seismic interferometry of vehicle traffic: A case study from upstate New York, USA

Authors

  • Diego Quiros Department of Geological Sciences, University of Cape Town, Cape Town, South Africa, 7701 https://orcid.org/0000-0002-4946-5322
  • Larry Brown Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York, USA

DOI:

https://doi.org/10.26443/seismica.v4i2.1688

Keywords:

traffic noise, Surface waves, seismic interferometry, P-wave

Abstract

Seismic interferometry of vehicle traffic recorded by a vertical seismograph array along a highway in upstate New York has recovered surface and body waves that match the velocities of waves in the Devonian and Silurian shales. Faster arrivals extracted via interferometry align with P-waves from a controlled-source refraction survey and with local velocities derived from seismicity in the study region, while the slower linear arrivals agree with Rayleigh waves observed in the refraction survey. Traffic volume shows significant variation between peak and non-peak hours. Amplitude variation is minimal, reducing the need for normalization to extract body waves; nonetheless, better results are obtained when cross-coherence is used in conjunction with small time windows to reduce crosstalk among the vehicle sources, given their transient nature. In comparison to other seismic sources such as trains, vehicle traffic also has a broadband signature, although more compact in time as shown by spectrograms. The results presented here suggest that vehicle traffic can function as an effective seismic source for body wave interferometry under the right conditions and survey geometries.

References

Bakulin, A., & Calvert, R. (2004, January). Virtual source: new method for imaging and 4D below complex overburden. SEG Technical Program Expanded Abstracts 2004. https://doi.org/10.1190/1.1845233

Barman, D., Pulliam, J., & Quiros, D. A. (2023). Ambient seismic noise tomography of the Suwannee suture zone using cross-coherence interferometry and double beamforming. Geophysical Journal International, 236(1), 688–699. https://doi.org/10.1093/gji/ggad399

Behm, M., Leahy, G. M., & Snieder, R. (2013). Retrieval of local surface wave velocities from traffic noise – an example from the La Barge basin (Wyoming). Geophysical Prospecting, 62(2), 223–243. https://doi.org/10.1111/1365-2478.12080

Behm, M., & Snieder, R. (2013). Love waves from local traffic noise interferometry. The Leading Edge, 32(6), 628–632. https://doi.org/10.1190/tle32060628.1

Brenguier, F., Boué, P., Ben‐Zion, Y., Vernon, F., Johnson, C. W., Mordret, A., Coutant, O., Share, P. ‐E., Beaucé, E., Hollis, D., & Lecocq, T. (2019). Train Traffic as a Powerful Noise Source for Monitoring Active Faults With Seismic Interferometry. Geophysical Research Letters, 46(16), 9529–9536. https://doi.org/10.1029/2019gl083438

Brown, L. D., Davenport, K., Quiros, D. A., Han, L., Chen, C., & Hole, J. A. (2011). Aftershock Imaging with Dense Arrays (AIDA) following the August 23, 2011, Mw 5.8, Virginia Earthquake: Feasibility Demonstration and Preliminary Results. AGU Fall Meeting Abstracts, 14–06.

Brown, L. D., Davenport, K., Quiros, D. A., Hole, J. A., Han, L., & Horowitz, F. G. (2012). Aftershock Imaging with Dense Arrays (AIDA): Results and lessons learned from the dense deployment of EarthScope portable instruments following the August 23, 2011, Mw 5.8, Virginia Earthquake. AGU Fall Meeting Abstracts, 2021, 51–2462.

Chamarczuk, M., Malinowski, M., Draganov, D., Koivisto, E., Heinonen, S., & Rötsä, S. (2022). Reflection imaging of complex geology in a crystalline environment using virtual-source seismology: case study from the Kylylahti polymetallic mine, Finland. Solid Earth, 13(3), 705–723. https://doi.org/10.5194/se-13-705-2022

Claerbout, J. F. (1968). Synthesis of a Layered Medium from its Acoustic Transmission Response. GEOPHYSICS, 33(2), 264–269. https://doi.org/10.1190/1.1439927

Draganov, D., Wapenaar, K., & Thorbecke, J. (2008). Seismic Interferometry: History and Present Status. Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560801924

Draganov, D., Wapenaar, K., Thorbecke, J., & Nishizawa, O. (2007). Retrieving reflection responses by crosscorrelating transmission responses from deterministic transient sources: Application to ultrasonic data. The Journal of the Acoustical Society of America, 122(5), EL172–EL178. https://doi.org/10.1121/1.2794864

Ekström, G. (2001). Time domain analysis of Earth’s long‐period background seismic radiation. Journal of Geophysical Research: Solid Earth, 106(B11), 26483–26493. https://doi.org/10.1029/2000jb000086

Halliday, D., Curtis, A., & Kragh, E. (2008). Seismic surface waves in a suburban environment: Active and passive interferometric methods. The Leading Edge, 27(2), 210–218. https://doi.org/10.1190/1.2840369

Haubrich, R. A., Munk, W. H., & Snodgrass, F. E. (1963). Comparative spectra of microseisms and swell. Bulletin of the Seismological Society of America, 53(1), 27–37. https://doi.org/10.1785/bssa0530010027

Holbrook, W. S., Fer, I., Schmitt, R. W., Lizarralde, D., Klymak, J. M., Helfrich, L. C., & Kubichek, R. (2013). Estimating oceanic turbulence dissipation from seismic images. Journal of Atmospheric and Oceanic Technology, 30(8). https://doi.org/10.1175/JTECH-D-12-00140.1

Liu, L., Liu, Y., Li, T., He, Y., Du, Y., & Luo, Y. (2021). Inversion of vehicle-induced signals based on seismic interferometry and recurrent neural networks. GEOPHYSICS, 86(3), Q37–Q45. https://doi.org/10.1190/geo2020-0498.1

Matsuoka, T., Shiraishi, K., Onishi, K., & Aizawa, T. (2006). Application of seismic interferometry to subsurface imaging (1). Proceedings of the 10th International Symposium on Recent Advanced in Exploration Geophysics (RAEG2006), 35–38.

Meng, H., Ben-Zion, Y., & Johnson, C. W. (2021). Analysis of Seismic Signals Generated by Vehicle Traffic with Application to Derivation of Subsurface Q-Values. Seismological Research Letters, 92(4), 2354–2363. https://doi.org/10.1785/0220200457

Mi, B., Xia, J., Tian, G., Shi, Z., Xing, H., Chang, X., Xi, C., Liu, Y., Ning, L., Dai, T., Pang, J., Chen, X., Zhou, C., & Zhang, H. (2022). Near-surface imaging from traffic-induced surface waves with dense linear arrays: An application in the urban area of Hangzhou, China. GEOPHYSICS, 87(2), B145–B158. https://doi.org/10.1190/geo2021-0184.1

Miyazawa, M., Snieder, R., & Venkataraman, A. (2008). Application of seismic interferometry to extract P- and S-wave propagation and observation of shear-wave splitting from noise data at Cold Lake, Alberta, Canada. GEOPHYSICS, 73(4), D35–D40. https://doi.org/10.1190/1.2937172

Nakata, N., Chang, J. P., Lawrence, J. F., & Boué, P. (2015). Body wave extraction and tomography at Long Beach, California, with ambient‐noise interferometry. Journal of Geophysical Research: Solid Earth, 120(2), 1159–1173. https://doi.org/10.1002/2015jb011870

Nakata, N., Snieder, R., Larner, K., Tsuji, T., & Matsuoka, T. (2011). Shear‐wave imaging from traffic noise using seismic interferometry by cross‐coherence. SEG Technical Program Expanded Abstracts 2011, 1580–1585. https://doi.org/10.1190/1.3627505

Quiros, D. (2025a). Metadata for Raw Seismic Data for Traffic Interferometry experiment from Ithaca, NY, USA [Dataset]. University of Cape Town. https://doi.org/10.25375/uct.28688210.v1

Quiros, D. (2025b). Raw Seismic Data for Traffic Interferometry Experiment from Ithaca, NY, USA [Dataset]. University of Cape Town. https://doi.org/10.25375/uct.28687148.v1

Quiros, D. A., Brown, L. D., & Kim, D. (2016). Seismic interferometry of railroad induced ground motions: body and surface wave imaging. Geophysical Journal International, 205(1), 301–313. https://doi.org/10.1093/gji/ggw033

Riahi, N., & Gerstoft, P. (2015). The seismic traffic footprint: Tracking trains, aircraft, and cars seismically. Geophysical Research Letters, 42(8), 2674–2681. https://doi.org/10.1002/2015gl063558

Roux, P., Sabra, K. G., Gerstoft, P., Kuperman, W. A., & Fehler, M. C. (2005). P‐waves from cross‐correlation of seismic noise. Geophysical Research Letters, 32(19). https://doi.org/10.1029/2005gl023803

Ruigrok, E., Campman, X., Draganov, D., & Wapenaar, K. (2010). High-resolution lithospheric imaging with seismic interferometry. Geophysical Journal International, 183(1), 339–357. https://doi.org/10.1111/j.1365-246x.2010.04724.x

Ryberg, T. (2011). Body wave observations from cross-correlations of ambient seismic noise: A case study from the Karoo, RSA. Geophysical Research Letters, 38(13). https://doi.org/10.1029/2011gl047665

Schuster, G. T., Yu, J., Sheng, J., & Rickett, J. (2004). Interferometric/daylight seismic imaging. Geophysical Journal International, 157(2), 838–852. https://doi.org/10.1111/j.1365-246x.2004.02251.x

Shapiro, N. M., Campillo, M., Stehly, L., & Ritzwoller, M. H. (2005). High-Resolution Surface-Wave Tomography from Ambient Seismic Noise. Science, 307(5715), 1615–1618. https://doi.org/10.1126/science.1108339

Shiraishi, K., Tanaka, M., Onishi, K., Matsuoka, T., & Yamaguchi, S. (2006). Application of Seismic Interferometry to Subsurface Imaging (2). The 10th International Symposium on Recent Advances in Exploration Geophysics (RAEG 2006). https://doi.org/10.3997/2352-8265.20140076

Snieder, R. (2004). Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase. Physical Review E, 69(4). https://doi.org/10.1103/physreve.69.046610

Spangler, M. A., & Nowack, R. L. (2022). Seismic Interferometry Applied to Wind Farm and Other Anthropogenic Noise Sources. Seismological Research Letters, 94(1), 123–139. https://doi.org/10.1785/0220220201

Suhey, J., Katz, Z., Zhang, M., Ferris, A., Pritchard, M., Salerno, J., Hubbard, P., & Gustafson, J. O. (2021). Analysis of Cornell University’s Seismic Networks for the Earth Source Heat Initiative. In Cornell Earth Source Heat Project: Technical Reports and Datasets. https://hdl.handle.net/1813/103518.

Tamulonis, K. L., Jordan, T. E., & Slater, B. (2011). Carbon dioxide storage potential for the Queenston Formation near the AES Cayuga coal-fired power plant in Tompkins County, New York. Environmental Geosciences, 18(1), 1–17. https://doi.org/10.1306/eg.05191010005

The ObsPy Development Team. (2024). ObsPy 1.4.1 (1.4.1) [Software]. Zenodo. https://doi.org/10.5281/zenodo.11093256

Tian, D., Uieda, L., Leong, W. J., Fröhlich, Y., Schlitzer, W., Grund, M., Jones, M., Toney, L., Yao, J., Tong, J.-H., Magen, Y., Materna, K., Belem, A., Newton, T., Anant, A., Ziebarth, M., Quinn, J., & Wessel, P. (2025). PyGMT: A Python interface for the Generic Mapping Tools (v0.15.0) [Software]. Zenodo. https://doi.org/10.5281/zenodo.15071586

Toksöz, M. N., & Lacoss, R. T. (1968). Microseisms: Mode Structure and Sources. Science, 159(3817), 872–873. https://doi.org/10.1126/science.159.3817.872

Wapenaar, K. (2003). Synthesis of an inhomogeneous medium from its acoustic transmission response. GEOPHYSICS, 68(5), 1756–1759. https://doi.org/10.1190/1.1620649

Wapenaar, K. (2004). Retrieving the Elastodynamic Green’s Function of an Arbitrary Inhomogeneous Medium by Cross Correlation. Physical Review Letters, 93(25). https://doi.org/10.1103/physrevlett.93.254301

Wapenaar, K., & Fokkema, J. (2006). Green’s function representations for seismic interferometry. GEOPHYSICS, 71(4), SI33–SI46. https://doi.org/10.1190/1.2213955

Wapenaar, K., Thorbecke, J., & Draganov, D. (2004). Relations between reflection and transmission responses of three-dimensional inhomogeneous media. Geophysical Journal International, 156(2), 179–194. https://doi.org/10.1111/j.1365-246x.2003.02152.x

Downloads

Additional Files

Published

2025-10-17

How to Cite

Quiros, D., & Brown, L. (2025). Retrieval of body waves with seismic interferometry of vehicle traffic: A case study from upstate New York, USA. Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.1688

Issue

Section

Articles