Improving microearthquake detection in the Val d’Agri region (Southern Italy) with deep learning

Authors

  • Elisa Caredda University of Bologna
  • Marius Paul Isken GFZ Helmholtz Centre for Geosciences, Potsdam, Germany
  • Simone Cesca GFZ Helmholtz Centre for Geosciences, Potsdam, Germany
  • Maddalena Errico Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
  • Giampaolo Zerbinato Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
  • Andrea Morelli Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy

Keywords:

deep learning, microseismic monitoring, microseismicity

Abstract

The detection and monitoring of low-magnitude earthquakes are crucial for situational awareness and risk assessment. We employ two advanced methodologies for seismic arrival time picking, detection, and localization of microseismicity in the Basilicata region (southern Italy). Both approaches rely on deep neural networks for detecting and picking P- and S-wave arrivals. This region exhibits complex seismicity due to tectonic setting, reservoir impoundment, and hydrocarbon extraction, as it hosts Europe’s largest onshore oil field and a dammed water reservoir. We compare our results with a reference catalog based on the classical short-time average over long-time average (STA/LTA) method and analyst reviews. The machine-learning-based catalogs identify approximately twice as many earthquakes as the reference bulletin, with recall rates (indicating the proportion of retrieved events also present in the reference catalog) of 93% and 77%, respectively. Our findings demonstrate that deep learning significantly improves the magnitude detection threshold while ensuring high reliability. A significant advantage is the fully automated and rapid workflow, which produces a homogeneous catalog and can be integrated into near-real-time seismic monitoring. These tools thus provide valuable advancements in earthquake detection and sequence analysis.

References

Adinolfi, G. M., Cesca, S., Picozzi, M., Heimann, S., & Zollo, A. (2018). Detection of weak seismic sequences based on arrival time coherence and empiric network detectability: an application at a near fault observatory. Geophys. J. Int., 218, 2054–2065.

Aki, K. (1965). Maximum Likelihood Estimate of b in the Formula log N=a-Bm and its Confidence Limits. Bull. Earthq. Res. Inst., 43, 237–239.

Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America , 68(5), 1521–1532. https://doi.org/10.1785/BSSA0680051521

Bakun, W. H., & Joyner, W. B. (1984). The ML Scale in Central California. Bulletin of the Seismological Society of America , 75(5), 1827–1843.

Berbellini, A., Zaccarelli, L., Faenza, L., Garcia, A., Improta, L., De Gori, P., & Morelli, A. (2021). Effect of Groundwater on Noise-Based Monitoring of Crustal Velocity Changes Near a Produced Water Injection Well in Val d’Agri (Italy). Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.626720

Beyreuther, M., R., Barsch, Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533.

Braun, T., Danesi, S., & Morelli, A. (2020). Application of monitoring guidelines to induced seismicity in Italy. Journal of Seismology , 1–14. https://doi.org/10.1007/s10950-019-09901-7

Caredda, E., Isken, M. P., Cesca, S., Errico, M., Zerbinato, G., & Morelli, A. (2025). Earthquake catalogs for: Improving detection of micro-earthquakes in the Val d’Agri region (Southern Italy) using Deep Learning algorithms [Data set]. Zenodo. https://doi.org/10.5281/zenodo.17123383

Cello, G., E., Tondi, Micarelli, L., & Mattioni, L. (2003). Active tectonics and earthquake sources in the epicentral area of the 1857 Basilicata earthquake, southern Italy. J. Geodyn., 36(19), 37–50.

Cianetti, S., Lomax, A., Michelini, A., & et al. (2025). Comparison of Deep-Learning Versus Manual Seismic Arrival-Time Picks Based on Quality of High-Precision Earthquake Locations and Seismic Tomography. ESS Open Archive . https://doi.org/10.22541/essoar.174672009.98242960/v1

CNR IMAA Consiglio Nazionale delle Ricerche (Italy), High Agri Valley geophysical Observatory [Data set]. (2019). International Federation of Digital Seismograph Networks. . https://doi.org///doi.org/10.7914/SN/VD

Deutsches GeoForschungsZentrum GFZ,GEOFON Data Centre (1993) GEOFON Seismic Network [Data set]. (1993). https://doi.org/10.14470/TR560404

Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356.

Fonzetti, R., Govoni, A., De Gori, P., & Chiarabba, C. (2024). A rapid analysis of aftershock processes after a moderate magnitude earthquake with ML methods. Geophysical Journal International, 239(1), 99–111. https://doi.org/10.1093/gji/ggae262

Gentili, S., & Michelini, A. (2006). Automatic picking of P and S phases using a neural tree. J. Seismol., 10, 39–63. https://doi.org/10.1007/s10950-006-2296-6

Grigoli, F., Cesca, S., Amoroso, O., Emolo, A., Zollo, A., & Dahm, T. (2014). Automated seismic event location by waveform coherence analysis. Geophysical Journal International, 196(3), 1742–1753. https://doi.org/10.1093/gji/ggt477

Gupta, H. K., Rastogi, B. K., & Narain, H. (1972). Common features of the reservoir-associated seismic activities. Bulletin of the Seismological Society of America, 62(2), 481–492. https://doi.org/10.1093/gji/ggt477

Heimann, S., Kriegerowski, M., Isken, M., S., Cesca, Daout, S., Grigoli, F., Juretzek, C., Megies, T., N., N., A., Steinberg, Sudhaus, H., Vasyura-Bathke, H., Willey, T., & Dahm, T. (2017). Pyrocko - An open-source seismology toolbox and library. Potsdam : GFZ Data Services. https://doi.org/10.1093/gji/ggt477

Hunter, J. D. (2007). “Matplotlib: A 2D Graphics Environment.” Computing in Science & Engineering, 9(3), 90–95.

Improta, L., Bagh, S., De Gori, P., Valoroso, L., Pastori, M., Piccinini, D., Chiarabba, C., Anselmi, M., & Buttinelli, M. (2017). Reservoir structure and wastewater-induced seismicity at the Val d’Agri Oilfield (Italy) shown by three-dimensional vP and vP/vS local earthquake tomography. J. Geophys. Res., 122(11), 9050–9082. https://doi.org/10.1002/2017JB014725

Irpinia Seismic Network (ISNet). (2005). https://www.fdsn.org/networks/detail/IX/

Isken, M., Niemz, P., Münchmeyer, J., Büyükakpınar, P., Heimann, S., Cesca, S., Vasyura-Bathke, H., & Dahm, T. (2025). Qseek: A data-driven Framework for Automated Earthquake Detection, Localization and Characterization. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1283

Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rete Sismica Nazionale (RSN). (2005). https://doi.org/10.13127/SD/X0FXnH7QfY

Lavecchia, G., Bello, S., Cirillo, D., Pietrolungo, F., & Brozzetti, F. (2023). Quaternary-Host Faults Database 2.0 (Southern Italy) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10370819

Lomax, A., Michelini, A., & Curtis, A. (2014). Earthquake Location, Direct, Global-Search Methods. In In: Meyers R. (eds) Encyclopedia of Complexity and Systems Science (Vol. 18). Springer, New York, NY. https://doi.org/10.1007/978-94-015-9536-0_5

Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic Earthquake Location in 3D and Layered Models. In In: Thurber C.H., Rabinowitz N. (eds) Advances in Seismic Event Location. Modern Approaches in Geophysics, (Vol. 18, pp. 101–134). Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9536-0_5

McNamara, D. E., & Boaz, R. I. (2005). Seismic Noise Analysis System Using Power Spectral Density Probability Density Functions: A Stand-Alone Software Package. USGS Open-File Report, 1438. https://pubs.usgs.gov/of/2005/1438/pdf/OFR-1438.pdf

Michelini, A., Cianetti, S., Gaviano, S., Giunchi, C., Jozinović, D., & Lauciani, V. (2021). INSTANCE – the Italian seismic dataset for machine learning. Earth System Science Data, 13(12), 5509–5544. https://doi.org/10.5194/essd-13-5509-2021

Morelli, A., Anselmi, M., Braun, T., Danesi, S., Errico, M., Famiani, D., Garcia, A., Molinari, I., Vassallo, M., Zaccarelli, L., & Zerbinato, G. (2025). A state-of-the-art analysis system designed to monitor microseismicity at a local scale. Annals of Geophysics, 67(6). https://doi:10.4401/ag-9124

Mousavi, S. M., & Beroza, G. C. (2020). Bayesian-Deep-Learning Estimation of Earthquake Location From Single-Station Observations. IEEE Transactions on Geoscience and Remote Sensing, 58(11), 8211–8224. https://doi.org/10.1109/TGRS.2020.2988770

Mousavi, S. M., & Beroza, G. C. (2022). Deep-learning seismology. Science, 377(1). https://doi.org/10.1126/science.abm4470

Mousavi, S. M., & Beroza, G. C. (2023a). Machine Learning in Earthquake Seismology [Journal Article]. Annual Review of Earth and Planetary Sciences, 51(Volume 51, 2023), 105–129. https://doi.org/10.1146/annurev-earth-071822-100323

Mousavi, S. M., & Beroza, G. C. (2023b). Machine Learning in Earthquake Seismology. Annual Review of Earth and Planetary Sciences, 51(1), 105–129. https://doi.org/ https://doi.org/10.1146/annurev-earth-071822-100323

Mousavi, S. M., Ellsworth, W. L., Zhu, W., & et al. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat Commun, 11(3952). https://doi.org/10.1038/s41467-020-17591-w

Ogata, Y., & Katsura, K. (1993). Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues. Geophysical Journal International, 113(3), 727–738. https://doi.org/10.1111/j.1365-246X.1993.tb04663.x

Richards‐Dinger, K. B., & Shearer, P. M. (2000). Earthquake locations in southern California obtained using source‐specific station terms. Journal of Geophysical Research: Solid Earth, 105(B5), 10939–10960. https://doi.org/10.1029/2000JB900014

Ringler, A. T., & Evans, J. R. (2015). A Quick SEED Tutorial. Seismological Research Letters, 86(6), 1717–1725. https://doi.org/10.1785/0220150043

Romeo, G., F. Mele, & A. Morelli. (1995). Neural networks and discrimination of seismic signals. Computers & Geosciences, 21(2), 279–288. https://doi.org/10.1016/0098-3004(94)00072-3

Scarpetta, S., Giudicepietro, F., Ezin, E. C., Petrosino, S., Del Pezzo, E., Martini, M., & Marinaro, M. (2005). Automatic Classification of Seismic Signals at Mt. Vesuvius Volcano, Italy, Using Neural Networks. Bull. Seismol. Soc. Am., 95(1), 185–196. https://doi.org/10.1785/0120030075

SpA, E. (2001). Val d’Agri Network [Data set]. https://doi.org/10.7914/SN/VA

Stabile, T. A., Giocoli, A., Lapenna, V., Perrone, A., Piscitelli, S., & Telesca, L. (2014). Evidence of Low‐Magnitude Continued Reservoir‐Induced Seismicity Associated with the Pertusillo Artificial Lake (Southern Italy). Bulletin of the Seismological Society of America, 104(4), 1820–1828. https://doi.org/10.1785/0120130333

Stabile, T. A., Serlenga, V., Satriano, C., Romanelli, M., Gueguen, E., Gallipoli, M. R., Ripepi, E., Saurel, J.-M., Panebianco, S., Bellanova, J., & Enrico Priolo, E. (2020). The INSIEME seismic network: a research infrastructure for studying induced seismicity in the High Agri Valley (southern Italy). Earth System Science Data, 12(1), 519–538. https://doi.org/10.5194/essd-12-519-2020

Talwani, P. (1997). On the Nature of Reservoir Induced Seismicity. Pure and Applied Geophysics, 150, 473–492. https://doi.org/10.1785/0120130333

Telesca, L., Panebianco, S., Serlenga, V., & Stabile, T. A. (2025). Fractal, Spectral, and Topological Analysis of the Reservoir-Induced Seismicity of Pertusillo Area (Southern Italy). Fractal and Fractional, 9(4). https://www.mdpi.com/2504-3110/9/4/208

TOTAL E&P, Gorgoglione Seismic Network [Data set]. (2018). https://www.fdsn.org/networks/detail/TP/

Vaezi, Y., & van der Baan, M. (2015). Comparison of the STA/LTA and power spectral density methods for microseismic event detection. Geophysical Journal International, 203(3), 1896–1908. https://doi.org/10.1093/gji/ggv419

Valoroso, L., Improta, L., Chiaraluce, L., Di Stefano, R., Ferranti, L., Govoni, A., & Chiarabba, C. (2009). Active faults and induced seismicity in the Val d’Agri area (Southern Apennines, Italy). Geophysical Journal International, 178(1), 488–502. https://doi.org/10.1111/j.1365-246X.2009.04166.x

Valoroso, L., Piccinini, D., Improta, L., Gaviano, S., & Giunchi, C. (2023). Characterizing seismogenic fault structures of the Lake Pertusillo reservoir induced seismicity (Southern Italy) using a relocated template-matching catalog. Journal of Geophysical Research: Solid Earth, 128, e2022JB025879, 488–502. https://doi.org/10.1029/2022JB025879

Wickham‐Piotrowski, A., Font, Y., Regnier, M., Delouis, B., Lengliné, O., Segovia, M., & Bletery, Q. (2023). Achieving a Comprehensive Microseismicity Catalog through a Deep‐Learning‐Based Workflow: Applications in the Central Ecuadorian Subduction Zone. Bulletin of the Seismological Society of America, 114(2), 823–841. https://doi.org/10.1785/0120230128

Wiemer, S. (2001). A Software Package to Analyze Seismicity: ZMAP. Seismological Research Letters, 72(3), 373–382. https://doi.org/10.1785/gssrl.72.3.373

Withers, M. M., Aster, R. C., Young, C. J., & Chael, E. P. (1996). High-frequency analysis of seismic background noise as a function of wind speed and shallow depth. Bulletin of the Seismological Society of America, 86(5), 1507–1515. https://doi.org/10.1785/BSSA0860051507

Woessner, J., & Wiemer, S. (2005). Assessing the Quality of Earthquake Catalogues: Estimating the Magnitude of Completeness and Its Uncertainty. Bulletin of the Seismological Society of America, 95(2), 684–698. https://doi.org/10.1785/0120040007

Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., & Soto, H. (2022). SeisBench—A Toolbox for Machine Learning in Seismology. Seismological Research Letters, 93(3), 1695–1709. https://doi.org/10.1785/0220210324

Zhang, M., Ellsworth, W. L., & Beroza, G. C. (2019). Rapid Earthquake Association and Location. Seismological Research Letters, 90(6), 2276–2284. https://doi.org/10.1785/0220190052

Zhu, W., & Beroza, G. C. (2019). PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1), 261–273. https://doi.org/10.1093/gji/ggy423

Zhu, W., Hou, A. B., Yang, R., Datta, A., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2022). QuakeFlow: a scalable machine-learning-based earthquake monitoring workflow with cloud computing. Geophysical Journal International, 232(1), 684–693. https://doi.org/10.1093/gji/ggac355

Zhu, W., McBrearty, I. W., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2022). Earthquake Phase Association Using a Bayesian Gaussian Mixture Model. Journal of Geophysical Research: Solid Earth, 127(5), e2021JB023249. https://doi.org/10.1029/2021JB023249

Downloads

Published

2025-11-03

How to Cite

Caredda, E., Isken, M. P., Cesca, S., Errico, M., Zerbinato, G., & Morelli, A. (2025). Improving microearthquake detection in the Val d’Agri region (Southern Italy) with deep learning. Seismica, 4(2). Retrieved from https://seismica.library.mcgill.ca/article/view/1690

Issue

Section

Articles