Improving microearthquake detection in the Val d’Agri region (Southern Italy) with deep learning
Keywords:
deep learning, microseismic monitoring, microseismicityAbstract
The detection and monitoring of low-magnitude earthquakes are crucial for situational awareness and risk assessment. We employ two advanced methodologies for seismic arrival time picking, detection, and localization of microseismicity in the Basilicata region (southern Italy). Both approaches rely on deep neural networks for detecting and picking P- and S-wave arrivals. This region exhibits complex seismicity due to tectonic setting, reservoir impoundment, and hydrocarbon extraction, as it hosts Europe’s largest onshore oil field and a dammed water reservoir. We compare our results with a reference catalog based on the classical short-time average over long-time average (STA/LTA) method and analyst reviews. The machine-learning-based catalogs identify approximately twice as many earthquakes as the reference bulletin, with recall rates (indicating the proportion of retrieved events also present in the reference catalog) of 93% and 77%, respectively. Our findings demonstrate that deep learning significantly improves the magnitude detection threshold while ensuring high reliability. A significant advantage is the fully automated and rapid workflow, which produces a homogeneous catalog and can be integrated into near-real-time seismic monitoring. These tools thus provide valuable advancements in earthquake detection and sequence analysis.
References
Adinolfi, G. M., Cesca, S., Picozzi, M., Heimann, S., & Zollo, A. (2018). Detection of weak seismic sequences based on arrival time coherence and empiric network detectability: an application at a near fault observatory. Geophys. J. Int., 218, 2054–2065.
Aki, K. (1965). Maximum Likelihood Estimate of b in the Formula log N=a-Bm and its Confidence Limits. Bull. Earthq. Res. Inst., 43, 237–239.
Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America , 68(5), 1521–1532. https://doi.org/10.1785/BSSA0680051521
Bakun, W. H., & Joyner, W. B. (1984). The ML Scale in Central California. Bulletin of the Seismological Society of America , 75(5), 1827–1843.
Berbellini, A., Zaccarelli, L., Faenza, L., Garcia, A., Improta, L., De Gori, P., & Morelli, A. (2021). Effect of Groundwater on Noise-Based Monitoring of Crustal Velocity Changes Near a Produced Water Injection Well in Val d’Agri (Italy). Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.626720
Beyreuther, M., R., Barsch, Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533.
Braun, T., Danesi, S., & Morelli, A. (2020). Application of monitoring guidelines to induced seismicity in Italy. Journal of Seismology , 1–14. https://doi.org/10.1007/s10950-019-09901-7
Caredda, E., Isken, M. P., Cesca, S., Errico, M., Zerbinato, G., & Morelli, A. (2025). Earthquake catalogs for: Improving detection of micro-earthquakes in the Val d’Agri region (Southern Italy) using Deep Learning algorithms [Data set]. Zenodo. https://doi.org/10.5281/zenodo.17123383
Cello, G., E., Tondi, Micarelli, L., & Mattioni, L. (2003). Active tectonics and earthquake sources in the epicentral area of the 1857 Basilicata earthquake, southern Italy. J. Geodyn., 36(19), 37–50.
Cianetti, S., Lomax, A., Michelini, A., & et al. (2025). Comparison of Deep-Learning Versus Manual Seismic Arrival-Time Picks Based on Quality of High-Precision Earthquake Locations and Seismic Tomography. ESS Open Archive . https://doi.org/10.22541/essoar.174672009.98242960/v1
CNR IMAA Consiglio Nazionale delle Ricerche (Italy), High Agri Valley geophysical Observatory [Data set]. (2019). International Federation of Digital Seismograph Networks. . https://doi.org///doi.org/10.7914/SN/VD
Deutsches GeoForschungsZentrum GFZ,GEOFON Data Centre (1993) GEOFON Seismic Network [Data set]. (1993). https://doi.org/10.14470/TR560404
Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356.
Fonzetti, R., Govoni, A., De Gori, P., & Chiarabba, C. (2024). A rapid analysis of aftershock processes after a moderate magnitude earthquake with ML methods. Geophysical Journal International, 239(1), 99–111. https://doi.org/10.1093/gji/ggae262
Gentili, S., & Michelini, A. (2006). Automatic picking of P and S phases using a neural tree. J. Seismol., 10, 39–63. https://doi.org/10.1007/s10950-006-2296-6
Grigoli, F., Cesca, S., Amoroso, O., Emolo, A., Zollo, A., & Dahm, T. (2014). Automated seismic event location by waveform coherence analysis. Geophysical Journal International, 196(3), 1742–1753. https://doi.org/10.1093/gji/ggt477
Gupta, H. K., Rastogi, B. K., & Narain, H. (1972). Common features of the reservoir-associated seismic activities. Bulletin of the Seismological Society of America, 62(2), 481–492. https://doi.org/10.1093/gji/ggt477
Heimann, S., Kriegerowski, M., Isken, M., S., Cesca, Daout, S., Grigoli, F., Juretzek, C., Megies, T., N., N., A., Steinberg, Sudhaus, H., Vasyura-Bathke, H., Willey, T., & Dahm, T. (2017). Pyrocko - An open-source seismology toolbox and library. Potsdam : GFZ Data Services. https://doi.org/10.1093/gji/ggt477
Hunter, J. D. (2007). “Matplotlib: A 2D Graphics Environment.” Computing in Science & Engineering, 9(3), 90–95.
Improta, L., Bagh, S., De Gori, P., Valoroso, L., Pastori, M., Piccinini, D., Chiarabba, C., Anselmi, M., & Buttinelli, M. (2017). Reservoir structure and wastewater-induced seismicity at the Val d’Agri Oilfield (Italy) shown by three-dimensional vP and vP/vS local earthquake tomography. J. Geophys. Res., 122(11), 9050–9082. https://doi.org/10.1002/2017JB014725
Irpinia Seismic Network (ISNet). (2005). https://www.fdsn.org/networks/detail/IX/
Isken, M., Niemz, P., Münchmeyer, J., Büyükakpınar, P., Heimann, S., Cesca, S., Vasyura-Bathke, H., & Dahm, T. (2025). Qseek: A data-driven Framework for Automated Earthquake Detection, Localization and Characterization. Seismica, 4(1). https://doi.org/10.26443/seismica.v4i1.1283
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rete Sismica Nazionale (RSN). (2005). https://doi.org/10.13127/SD/X0FXnH7QfY
Lavecchia, G., Bello, S., Cirillo, D., Pietrolungo, F., & Brozzetti, F. (2023). Quaternary-Host Faults Database 2.0 (Southern Italy) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10370819
Lomax, A., Michelini, A., & Curtis, A. (2014). Earthquake Location, Direct, Global-Search Methods. In In: Meyers R. (eds) Encyclopedia of Complexity and Systems Science (Vol. 18). Springer, New York, NY. https://doi.org/10.1007/978-94-015-9536-0_5
Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic Earthquake Location in 3D and Layered Models. In In: Thurber C.H., Rabinowitz N. (eds) Advances in Seismic Event Location. Modern Approaches in Geophysics, (Vol. 18, pp. 101–134). Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9536-0_5
McNamara, D. E., & Boaz, R. I. (2005). Seismic Noise Analysis System Using Power Spectral Density Probability Density Functions: A Stand-Alone Software Package. USGS Open-File Report, 1438. https://pubs.usgs.gov/of/2005/1438/pdf/OFR-1438.pdf
Michelini, A., Cianetti, S., Gaviano, S., Giunchi, C., Jozinović, D., & Lauciani, V. (2021). INSTANCE – the Italian seismic dataset for machine learning. Earth System Science Data, 13(12), 5509–5544. https://doi.org/10.5194/essd-13-5509-2021
Morelli, A., Anselmi, M., Braun, T., Danesi, S., Errico, M., Famiani, D., Garcia, A., Molinari, I., Vassallo, M., Zaccarelli, L., & Zerbinato, G. (2025). A state-of-the-art analysis system designed to monitor microseismicity at a local scale. Annals of Geophysics, 67(6). https://doi:10.4401/ag-9124
Mousavi, S. M., & Beroza, G. C. (2020). Bayesian-Deep-Learning Estimation of Earthquake Location From Single-Station Observations. IEEE Transactions on Geoscience and Remote Sensing, 58(11), 8211–8224. https://doi.org/10.1109/TGRS.2020.2988770
Mousavi, S. M., & Beroza, G. C. (2022). Deep-learning seismology. Science, 377(1). https://doi.org/10.1126/science.abm4470
Mousavi, S. M., & Beroza, G. C. (2023a). Machine Learning in Earthquake Seismology [Journal Article]. Annual Review of Earth and Planetary Sciences, 51(Volume 51, 2023), 105–129. https://doi.org/10.1146/annurev-earth-071822-100323
Mousavi, S. M., & Beroza, G. C. (2023b). Machine Learning in Earthquake Seismology. Annual Review of Earth and Planetary Sciences, 51(1), 105–129. https://doi.org/ https://doi.org/10.1146/annurev-earth-071822-100323
Mousavi, S. M., Ellsworth, W. L., Zhu, W., & et al. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat Commun, 11(3952). https://doi.org/10.1038/s41467-020-17591-w
Ogata, Y., & Katsura, K. (1993). Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues. Geophysical Journal International, 113(3), 727–738. https://doi.org/10.1111/j.1365-246X.1993.tb04663.x
Richards‐Dinger, K. B., & Shearer, P. M. (2000). Earthquake locations in southern California obtained using source‐specific station terms. Journal of Geophysical Research: Solid Earth, 105(B5), 10939–10960. https://doi.org/10.1029/2000JB900014
Ringler, A. T., & Evans, J. R. (2015). A Quick SEED Tutorial. Seismological Research Letters, 86(6), 1717–1725. https://doi.org/10.1785/0220150043
Romeo, G., F. Mele, & A. Morelli. (1995). Neural networks and discrimination of seismic signals. Computers & Geosciences, 21(2), 279–288. https://doi.org/10.1016/0098-3004(94)00072-3
Scarpetta, S., Giudicepietro, F., Ezin, E. C., Petrosino, S., Del Pezzo, E., Martini, M., & Marinaro, M. (2005). Automatic Classification of Seismic Signals at Mt. Vesuvius Volcano, Italy, Using Neural Networks. Bull. Seismol. Soc. Am., 95(1), 185–196. https://doi.org/10.1785/0120030075
SpA, E. (2001). Val d’Agri Network [Data set]. https://doi.org/10.7914/SN/VA
Stabile, T. A., Giocoli, A., Lapenna, V., Perrone, A., Piscitelli, S., & Telesca, L. (2014). Evidence of Low‐Magnitude Continued Reservoir‐Induced Seismicity Associated with the Pertusillo Artificial Lake (Southern Italy). Bulletin of the Seismological Society of America, 104(4), 1820–1828. https://doi.org/10.1785/0120130333
Stabile, T. A., Serlenga, V., Satriano, C., Romanelli, M., Gueguen, E., Gallipoli, M. R., Ripepi, E., Saurel, J.-M., Panebianco, S., Bellanova, J., & Enrico Priolo, E. (2020). The INSIEME seismic network: a research infrastructure for studying induced seismicity in the High Agri Valley (southern Italy). Earth System Science Data, 12(1), 519–538. https://doi.org/10.5194/essd-12-519-2020
Talwani, P. (1997). On the Nature of Reservoir Induced Seismicity. Pure and Applied Geophysics, 150, 473–492. https://doi.org/10.1785/0120130333
Telesca, L., Panebianco, S., Serlenga, V., & Stabile, T. A. (2025). Fractal, Spectral, and Topological Analysis of the Reservoir-Induced Seismicity of Pertusillo Area (Southern Italy). Fractal and Fractional, 9(4). https://www.mdpi.com/2504-3110/9/4/208
TOTAL E&P, Gorgoglione Seismic Network [Data set]. (2018). https://www.fdsn.org/networks/detail/TP/
Vaezi, Y., & van der Baan, M. (2015). Comparison of the STA/LTA and power spectral density methods for microseismic event detection. Geophysical Journal International, 203(3), 1896–1908. https://doi.org/10.1093/gji/ggv419
Valoroso, L., Improta, L., Chiaraluce, L., Di Stefano, R., Ferranti, L., Govoni, A., & Chiarabba, C. (2009). Active faults and induced seismicity in the Val d’Agri area (Southern Apennines, Italy). Geophysical Journal International, 178(1), 488–502. https://doi.org/10.1111/j.1365-246X.2009.04166.x
Valoroso, L., Piccinini, D., Improta, L., Gaviano, S., & Giunchi, C. (2023). Characterizing seismogenic fault structures of the Lake Pertusillo reservoir induced seismicity (Southern Italy) using a relocated template-matching catalog. Journal of Geophysical Research: Solid Earth, 128, e2022JB025879, 488–502. https://doi.org/10.1029/2022JB025879
Wickham‐Piotrowski, A., Font, Y., Regnier, M., Delouis, B., Lengliné, O., Segovia, M., & Bletery, Q. (2023). Achieving a Comprehensive Microseismicity Catalog through a Deep‐Learning‐Based Workflow: Applications in the Central Ecuadorian Subduction Zone. Bulletin of the Seismological Society of America, 114(2), 823–841. https://doi.org/10.1785/0120230128
Wiemer, S. (2001). A Software Package to Analyze Seismicity: ZMAP. Seismological Research Letters, 72(3), 373–382. https://doi.org/10.1785/gssrl.72.3.373
Withers, M. M., Aster, R. C., Young, C. J., & Chael, E. P. (1996). High-frequency analysis of seismic background noise as a function of wind speed and shallow depth. Bulletin of the Seismological Society of America, 86(5), 1507–1515. https://doi.org/10.1785/BSSA0860051507
Woessner, J., & Wiemer, S. (2005). Assessing the Quality of Earthquake Catalogues: Estimating the Magnitude of Completeness and Its Uncertainty. Bulletin of the Seismological Society of America, 95(2), 684–698. https://doi.org/10.1785/0120040007
Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., & Soto, H. (2022). SeisBench—A Toolbox for Machine Learning in Seismology. Seismological Research Letters, 93(3), 1695–1709. https://doi.org/10.1785/0220210324
Zhang, M., Ellsworth, W. L., & Beroza, G. C. (2019). Rapid Earthquake Association and Location. Seismological Research Letters, 90(6), 2276–2284. https://doi.org/10.1785/0220190052
Zhu, W., & Beroza, G. C. (2019). PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1), 261–273. https://doi.org/10.1093/gji/ggy423
Zhu, W., Hou, A. B., Yang, R., Datta, A., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2022). QuakeFlow: a scalable machine-learning-based earthquake monitoring workflow with cloud computing. Geophysical Journal International, 232(1), 684–693. https://doi.org/10.1093/gji/ggac355
Zhu, W., McBrearty, I. W., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2022). Earthquake Phase Association Using a Bayesian Gaussian Mixture Model. Journal of Geophysical Research: Solid Earth, 127(5), e2021JB023249. https://doi.org/10.1029/2021JB023249
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Elisa Caredda, Marius Paul Isken, Simone Cesca, Maddalena Errico, Giampaolo Zerbinato, Andrea Morelli

This work is licensed under a Creative Commons Attribution 4.0 International License.
							
