A River on Fiber: High Resolution Fluvial Monitoring with Distributed Acoustic Sensing

Authors

  • Danica Li Roth Cooperative Institute for Research In Environmental Sciences, University of Colorado, Boulder https://orcid.org/0000-0001-9502-7836
  • Maximiliano J. Bezada Earth & Environmental Sciences, University of Minnesota https://orcid.org/0000-0002-7337-3276
  • Ge Jin Department of Geophysics, Colorado School of Mines
  • Claire C. Masteller Earth, Environmental, and Planetary Sciences, Washington University in St. Louis https://orcid.org/0000-0002-6830-7223
  • Matthew R. Siegfried Department of Geophysics, Colorado School of Mines; Hydrologic Science & Engineering Program, Colorado School of Mines https://orcid.org/0000-0002-0868-4633
  • Aleksei Titov Department of Geophysics, Colorado School of Mines
  • Bill Tate Earth & Environmental Sciences, University of Minnesota

DOI:

https://doi.org/10.26443/seismica.v4i2.1696

Keywords:

Distributed Acoustic Sensing, environmental seismology, fluvial seismology, Hydroacoustics

Abstract

Fluvially generated seismo-acoustic waves offer a novel means of investigating river processes, yet interpreting signals from individual seismometers or hydrophones remains challenging. This study demonstrates the potential of distributed acoustic sensing (DAS) for fluvial monitoring. We present strain-rate measurements and power spectra recorded at sub-meter resolution along 160 m of submerged fiber-optic cable in Clear Creek, CO, USA. We find that regions of enhanced turbulence, such as rapids, are associated with broadband signals, whereas reaches with less turbulent flow display spectral power within distinct frequency bands. In three such regions, we observe harmonic frequency banding with pronounced spatio-spectral gliding (i.e., peak frequencies vary systematically along-river). One of these regions is colocated with the source of a recurring impulsive signal characterized by audible "knocking" sounds in the acoustic strain-rate data. We use travel time analysis to determine that this signal is generated by cable-bed impacts due to turbulence-driven cable oscillation. Model results further indicate that along-cable variation in the lags between pulses and their reflections produces the banded spatio-spectral gliding. Our observations highlight the capacity for array methods to interrogate distinct signal sources in DAS data and emphasize the need for improved deployment techniques in dynamic fluvial environments.

References

Aitkulov, A., Marcon, L., Chiuso, A., Palmieri, L., and Galtarossa, A. 2022. Machine Learning Estimation of the Phase at the Fading Points of an OFDR-Based Distributed Sensor. Sensors, 23(1), p.262. DOI: https://doi.org/10.3390/s23010262

Ajo-Franklin, J., Dou, S., Lindsey, N., Monga, I., Tracy, C., Robertson, M., Rodriguez Tribaldos, V., Ulrich, C., Freifeld, B., Daley, T., and Li, X. 2019. Distributed Acoustic Sensing Using Dark Fiber for Near-Surface Characterization and Broadband Seismic Event Detection. Scientific Reports, 9(1). DOI: https://doi.org/10.1038/s41598-018-36675-8

Anthony, R., Aster, R., Ryan, S., Rathburn, S., and Baker, M. 2018. Measuring Mountain River Discharge Using Seismographs Emplaced Within the Hyporheic Zone. Journal of Geophysical Research: Earth Surface, 123(2), p.210–228. DOI: https://doi.org/10.1002/2017JF004295

Aubrey, D., and Trowbridge, J. 1985. Kinematic and dynamic estimates from electromagnetic current meter data. Journal of Geophysical Research: Oceans, 90(C5), p.9137–9146. DOI: https://doi.org/10.1029/JC090iC05p09137

Audoly, C., and Meyer, V. 2017. Measurement of radiated noise from surface ships-influence of the sea surface reflection coefficient on the Lloyd's mirror effect. In Proceedings of ACOUSTICS 2017.

Bakker, M., Gimbert, F., Geay, T., Misset, C., Zanker, S., and Recking, A. 2020. Field Application and Validation of a Seismic Bedload Transport Model. Journal of Geophysical Research: Earth Surface, 125(5). DOI: https://doi.org/10.1029/2019JF005416

Banks, E., Morgan, L., Sai Louie, A., Dempsey, D., and Wilson, S. 2022. Active distributed temperature sensing to assess surface water–groundwater interaction and river loss in braided river systems. Journal of Hydrology, 615, p.128667. DOI: https://doi.org/10.1016/j.jhydrol.2022.128667

Becker, M., Coleman, T., and Ciervo, C. 2020. Distributed Acoustic Sensing as a Distributed Hydraulic Sensor in Fractured Bedrock. Water Resources Research, 56(9). DOI: https://doi.org/10.1029/2020WR028140

Belleudy, P., Valette, A., and Graff, B. 2010. Passive hydrophone monitoring of bedload in river beds: first trials of signal spectral analyses. USGS, Scientific Investigations Report, 5091, p.67–84.

Best, J. On the interactions between turbulent flow structure, sediment transport and bedform development: some considerations from recent experimental research. In Clifford, N., R., J., and Hardisty, J., editors, Turbulence: Perspectives on flow and sediment transfer, page 61–92. John Wiley Sons, Ltd, 1993

Booth, A., Christoffersen, P., Schoonman, C., Clarke, A., Hubbard, B., Law, R., Doyle, S., Chudley, T., and Chalari, A. 2020. Distributed Acoustic Sensing of Seismic Properties in a Borehole Drilled on a Fast‐Flowing Greenlandic Outlet Glacier. Geophysical Research Letters, 47(13). DOI: https://doi.org/10.1029/2020GL088148

Bouffaut, L., Taweesintananon, K., Kriesell, H., Rørstadbotnen, R., Potter, J., Landrø, M., Johansen, S., Brenne, J., Haukanes, A., Schjelderup, O., and Storvik, F. 2022. Eavesdropping at the Speed of Light: Distributed Acoustic Sensing of Baleen Whales in the Arctic. Frontiers in Marine Science, 9. DOI: https://doi.org/10.3389/fmars.2022.901348

Brillinger, D. R. The Spectral Analysis of Stationary Interval Functions, page 25–55. Springer New York, Nov. 2011. DOI: https://doi.org/10.1007/978-1-4614-1344-8_4

Buffington, J., and Montgomery, D. 1997. A systematic analysis of eight decades of incipient motion studies, with special reference to gravel‐bedded rivers. Water Resources Research, 33(8), p.1993–2029. DOI: https://doi.org/10.1029/96WR03190

Burtin, A., Hovius, N., and Turowski, J. 2016. Seismic monitoring of torrential and fluvial processes. Earth Surface Dynamics, 4(2), p.285–307. DOI: https://doi.org/10.5194/esurf-4-285-2016

Caplan‐Auerbach, J., Dziak, R., Bohnenstiehl, D., Chadwick, W., and Lau, T. 2014. Hydroacoustic investigation of submarine landslides at West Mata volcano, Lau Basin. Geophysical Research Letters, 41(16), p.5927–5934. DOI: https://doi.org/10.1002/2014GL060964

Chanaud, R., and Powell, A. 1965. Some Experiments concerning the Hole and Ring Tone. The Journal of the Acoustical Society of America, 37(5), p.902–911. DOI: https://doi.org/10.1121/1.1909476

Chao, W.A., Wu, Y.M., Zhao, L., Tsai, V., and Chen, C.H. 2015. Seismologically determined bedload flux during the typhoon season. Scientific Reports, 5(1). DOI: https://doi.org/10.1038/srep08261

Cheng, F., Chi, B., Lindsey, N., Dawe, T., and Ajo-Franklin, J. 2021. Utilizing distributed acoustic sensing and ocean bottom fiber optic cables for submarine structural characterization. Scientific Reports, 11(1). DOI: https://doi.org/10.1038/s41598-021-84845-y

Chouet, B. 1988. Resonance of a fluid‐driven crack: Radiation properties and implications for the source of long‐period events and harmonic tremor. Journal of Geophysical Research: Solid Earth, 93(B5), p.4375–4400. DOI: https://doi.org/10.1029/JB093iB05p04375

Clifford, N. Morphology and stage-dependent flow structure in a gravel-bed river. In Ashworth, P., Best, S., J.L., and McLelland, S., editors, Coherent flow structures in open channels, page 545–566. Wiley and Sons, Ltd, 1996.

Cook, K., Andermann, C., Gimbert, F., Adhikari, B., and Hovius, N. 2018. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya. Science, 362(6410), p.53–57. DOI: https://doi.org/10.1126/science.aat4981

Cook, K., and Dietze, M. 2022. Seismic Advances in Process Geomorphology. Annual Review of Earth and Planetary Sciences, 50(1), p.183–204. DOI: https://doi.org/10.1146/annurev-earth-032320-085133

Cox, D., and Lewis, P. 1966. . The Statistical Analysis of Series of Events. Springer Netherlands. DOI: https://doi.org/10.1007/978-94-011-7801-3

Crameri, F.. (2023). Scientific colour maps.

Crameri, F. 2018. Geodynamic diagnostics, scientific visualisation and StagLab 3.0. Geoscientific Model Development, 11(6), p.2541–2562. DOI: https://doi.org/10.5194/gmd-11-2541-2018

Dean, T., Cuny, T., and Hartog, A. 2016. The effect of gauge length on axially incident P‐waves measured using fibre optic distributed vibration sensing. Geophysical Prospecting, 65(1), p.184–193. DOI: https://doi.org/10.1111/1365-2478.12419

Detert, M., Weitbrecht, V., and Jirka, G. 2010. Laboratory Measurements on Turbulent Pressure Fluctuations in and above Gravel Beds. Journal of Hydraulic Engineering, 136(10), p.779–789. DOI: https://doi.org/10.1061/(ASCE)HY.1943-7900.0000251

Díaz, J., Ruíz, M., Crescentini, L., Amoruso, A., and Gallart, J. 2014. Seismic monitoring of an Alpine mountain river. Journal of Geophysical Research: Solid Earth, 119(4), p.3276–3289. DOI: https://doi.org/10.1002/2014JB010955

Díaz, J., DeFelipe, I., Ruiz, M., Andrés, J., Ayarza, P., and Carbonell, R. 2022. Identification of natural and anthropogenic signals in controlled source seismic experiments. Scientific Reports, 12(1). DOI: https://doi.org/10.1038/s41598-022-07028-3

Dietze, M. 2018. The R package “eseis” – a software toolbox for environmental seismology. Earth Surface Dynamics, 6(3), p.669–686. DOI: https://doi.org/10.5194/esurf-6-669-2018

Dietze, M., Gimbert, F., Turowski, J., Stark, K., Cadol, D., and Laronne, J. 2019. The seismic view on sediment laden ephemeral flows–modelling of ground motion data for fluid and bedload dynamics in the Arroyo de los Piños. In Sedhyd Conference 2019.

Eibl, E., Lokmer, I., Bean, C., and Akerlie, E. 2017. Helicopter location and tracking using seismometer recordings. Geophysical Journal International, 209(2), p.901–908. DOI: https://doi.org/10.1093/gji/ggx048

Escobar-Vera, C., Soriano-Amat, M., Martin-Lopez, S., Gonzalez-Herraez, M., and Fernández-Ruiz, M. 2024. Dynamic Curvature and Torsion Monitoring Using Quasi-Integer-Ratio Time-Expanded ΦOTDR. Journal of Lightwave Technology, 42(18), p.6522–6530. DOI: https://doi.org/10.1109/JLT.2024.3445585

Gao, K., Huang, L., Donahue, C., and Ajo-Franklin, J. 2020. . Monitoring urban hydrological environment monitoring using fiber optical sensing. Publisher is required!. DOI: https://doi.org/10.2172/1673329

Geay, T., Belleudy, P., Gervaise, C., Habersack, H., Aigner, J., Kreisler, A., Seitz, H., and Laronne, J. 2017. Passive acoustic monitoring of bed load discharge in a large gravel bed river. Journal of Geophysical Research: Earth Surface, 122(2), p.528–545. DOI: https://doi.org/10.1002/2016JF004112

Geay, T., Michel, L., Zanker, S., and Rigby, J. 2019. Acoustic wave propagation in rivers: an experimental study. Earth Surface Dynamics, 7(2), p.537–548. DOI: https://doi.org/10.5194/esurf-7-537-2019

Geay, T., Zanker, S., Misset, C., and Recking, A. 2020. Passive Acoustic Measurement of Bedload Transport: Toward a Global Calibration Curve?. Journal of Geophysical Research: Earth Surface, 125(8). DOI: https://doi.org/10.1029/2019JF005242

Gimbert, F., Tsai, V., and Lamb, M. 2014. A physical model for seismic noise generation by turbulent flow in rivers. Journal of Geophysical Research: Earth Surface, 119(10), p.2209–2238. DOI: https://doi.org/10.1002/2014JF003201

Gimbert, F., Fuller, B., Lamb, M., Tsai, V., and Johnson, J. 2019. Particle transport mechanics and induced seismic noise in steep flume experiments with accelerometer-embedded tracers. Earth Surface Processes and Landforms, 44. DOI: https://doi.org/10.1002/esp.4495

Goodling, P., Lekic, V., and Prestegaard, K. 2018. Seismic signature of turbulence during the 2017 Oroville Dam spillway erosion crisis. Earth Surface Dynamics, 6(2), p.351–367. DOI: https://doi.org/10.5194/esurf-6-351-2018

Goto, K., Itoh, T., Nagayama, T., Kasai, M., and Marutani, T. 2014. Experimental and theoretical tools for estimating bedload transport using a Japanese pipe hydrophone. International Journal of Erosion Control Engineering, 7(4), p.101–110. DOI: https://doi.org/10.13101/ijece.7.101

Heeszel, D., Walter, F., and Kilb, D. 2014. Humming glaciers. Geology, 42(12), p.1099–1102. DOI: https://doi.org/10.1130/G35994.1

Hornman, J. 2016. Field trial of seismic recording using distributed acoustic sensing with broadside sensitive fibre‐optic cables. Geophysical Prospecting, 65(1), p.35–46. DOI: https://doi.org/10.1111/1365-2478.12358

Horoshenkov, K., Nichols, A., Tait, S., and Maximov, G. 2013. The pattern of surface waves in a shallow free surface flow. Journal of Geophysical Research: Earth Surface, 118(3), p.1864–1876. DOI: https://doi.org/10.1002/jgrf.20117

Hotovec, A., Prejean, S., Vidale, J., and Gomberg, J. 2013. Strongly gliding harmonic tremor during the 2009 eruption of Redoubt Volcano. Journal of Volcanology and Geothermal Research, 259, p.89–99. DOI: https://doi.org/10.1016/j.jvolgeores.2012.01.001

Hovem, J. M. Mechanisms of Bottom Loss in Underwater Acoustics, page 21–40. Springer Netherlands, 1993. DOI: https://doi.org/10.1007/978-94-011-1604-6_2

Howe, M. 1998. . Acoustics of Fluid-Structure Interactions. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511662898

Jatoi, G., Das, B., Karim, S., Pabani, J., Krichen, M., Alroobaea, R., and Kumar, M. 2022. Floating Nodes Assisted Cluster-Based Routing for Efficient Data Collection in Underwater Acoustic Sensor Networks. Computer Communications, 195, p.137–147. DOI: https://doi.org/10.1016/j.comcom.2022.08.014

Jerolmack, D., and Daniels, K. 2019. Viewing Earth’s surface as a soft-matter landscape. Nature Reviews Physics, 1(12), p.716–730. DOI: https://doi.org/10.1038/s42254-019-0111-x

Jerolmack, D., and Paola, C. 2010. Shredding of environmental signals by sediment transport. Geophysical Research Letters, 37(19). DOI: https://doi.org/10.1029/2010GL044638

Johnson, P., and Muir, T. 1969. Acoustic Detection Of Sediment Movement. Journal of Hydraulic Research, 7(4), p.519–540. DOI: https://doi.org/10.1080/00221686909500283

Kirkbride, A. Observations of the influence of bed roughness on turbulence structure in depth limited flows over gravel beds. In French, N., R., J., and Hardisty, J., editors, In Clifford, page 185–196. John Wiley and Sons, Chichester, 1993.

Krein, A., Klinck, H., Eiden, M., Symader, W., Bierl, R., Hoffmann, L., and Pfister, L. 2007. Investigating the transport dynamics and the properties of bedload material with a hydro‐acoustic measuring system. Earth Surface Processes and Landforms, 33(1), p.152–163. DOI: https://doi.org/10.1002/esp.1576

Krein, A., Schenkluhn, R., Kurtenbach, A., Bierl, R., and Barrière, J. 2016. Listen to the sound of moving sediment in a small gravel-bed river. International Journal of Sediment Research, 31(3), p.271–278. DOI: https://doi.org/10.1016/j.ijsrc.2016.04.003

Lagarde, S., Dietze, M., Gimbert, F., Laronne, J., Turowski, J., and Halfi, E. 2021. Grain‐Size Distribution and Propagation Effects on Seismic Signals Generated by Bedload Transport. Water Resources Research, 57(4). DOI: https://doi.org/10.1029/2020WR028700

Larose, E., Carrière, S., Voisin, C., Bottelin, P., Baillet, L., Guéguen, P., Walter, F., Jongmans, D., Guillier, B., Garambois, S., Gimbert, F., and Massey, C. 2015. Environmental seismology: What can we learn on earth surface processes with ambient noise?. Journal of Applied Geophysics, 116, p.62–74. DOI: https://doi.org/10.1016/j.jappgeo.2015.02.001

Lindsey, N., Dawe, T., and Ajo-Franklin, J. 2019. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science, 366(6469), p.1103–1107. DOI: https://doi.org/10.1126/science.aay5881

Lindsey, N., and Martin, E. 2021. Fiber-Optic Seismology. Annual Review of Earth and Planetary Sciences, 49(1), p.309–336. DOI: https://doi.org/10.1146/annurev-earth-072420-065213

Lindsey, N., Rademacher, H., and Ajo‐Franklin, J. 2020. On the Broadband Instrument Response of Fiber‐Optic DAS Arrays. Journal of Geophysical Research: Solid Earth, 125(2). DOI: https://doi.org/10.1029/2019JB018145

Lior, I., Mercerat, E., Rivet, D., Sladen, A., and Ampuero, J.P. 2022. Imaging an Underwater Basin and Its Resonance Modes Using Optical Fiber Distributed Acoustic Sensing. Seismological Research Letters, 93(3), p.1573–1584. DOI: https://doi.org/10.1785/0220210349

Lloyd, H. 1831. On a New Case of Interference of the Rays of Light. The Transactions of the Royal Irish Academy, 17, p.171–177.

Lo, K., Perry, S., and Ferguson, B. 2002. Aircraft flight parameter estimation using acoustical Lloyd’s mirror effect. IEEE Transactions on Aerospace and Electronic Systems, 38(1), p.137–151. DOI: https://doi.org/10.1109/7.993235

Loureiro, A., Schlaphorst, D., Matias, L., Pereira, A., Corela, C., Gonçalves, S., and Caldeira, R. 2025. First DAS observations from the GeoLab fibre in Madeira, Portugal. Journal is required!. DOI: https://doi.org/10.22541/essoar.173888335.59085596/v1

Lugli, M., and Fine, M. 2003. Acoustic communication in two freshwater gobies: Ambient noise and short-range propagation in shallow streams. The Journal of the Acoustical Society of America, 114(1), p.512–521. DOI: https://doi.org/10.1121/1.1577561

Lumsdon, A., Artamonov, I., Bruno, M., Righetti, K., Tonolla, D., and Zarfl, C. 2018. Soundpeaking - Hydropeaking induced changes in river soundscapes. River Res. Appl., 34(1), p.3–12. DOI: https://doi.org/10.1002/rra.3229

Luong, L., Cadol, D., Bilek, S., McLaughlin, J., Laronne, J., and Turowski, J. 2024. Seismic Modeling of Bedload Transport in a Gravel‐Bed Alluvial Channel. Journal of Geophysical Research: Earth Surface, 129(9). DOI: https://doi.org/10.1029/2024JF007761

Lurton, X. 2002. . An introduction to underwater acoustics: principles and applications. (Vol. 2). Springer.

MacAyeal, D., Okal, E., Aster, R., and Bassis, J. 2008. Seismic and hydroacoustic tremor generated by colliding icebergs. Journal of Geophysical Research: Earth Surface, 113(F3). DOI: https://doi.org/10.1029/2008JF001005

MacVicar, B., and Roy, A. 2007. Hydrodynamics of a forced riffle pool in a gravel bed river: 1. Mean velocity and turbulence intensity. Water Resources Research, 43(12). DOI: https://doi.org/10.1029/2006WR005272

Magirl, C., Gartner, J., Smart, G., and Webb, R. 2009. Water velocity and the nature of critical flow in large rapids on the Colorado River, Utah. Water Resources Research, 45(5). DOI: https://doi.org/10.1029/2009WR007731

Malehmir, A., Socco, L., Bastani, M., Krawczyk, C., Pfaffhuber, A., Miller, R., Maurer, H., Frauenfelder, R., Suto, K., Bazin, S., and Merz, K. Near-surface geophysical characterization of areas prone to natural hazards: a review of the current and perspective on the future, page 51–146. Elsevier, 2016. DOI: https://doi.org/10.1016/bs.agph.2016.08.001

Marquis, G., and Roy, A. 2011. Bridging the gap between turbulence and larger scales of flow motions in rivers. Earth Surface Processes and Landforms, 36(4), p.563–568. DOI: https://doi.org/10.1002/esp.2131

Martin, S., Drucker, R., Aster, R., Davey, F., Okal, E., Scambos, T., and MacAyeal, D. 2010. Kinematic and seismic analysis of giant tabular iceberg breakup at Cape Adare, Antarctica. Journal Geophysical Research: Solid Earth, 115(B6). DOI: https://doi.org/10.1029/2009JB006700

Martuganova, E., Stiller, M., Bauer, K., Henninges, J., and Krawczyk, C. 2021. Cable reverberations during wireline distributed acoustic sensing measurements: their nature and methods for elimination. Geophysical Prospecting, 69(5), p.1034–1054. DOI: https://doi.org/10.1111/1365-2478.13090

Masoudi, A., Lee, T., Beresna, M., and Brambilla, G. 2022. 10-cm spatial resolution distributed acoustic sensor based on an ultra low-loss enhanced backscattering fiber. Optics Continuum, 1(9), p.2002. DOI: https://doi.org/10.1364/OPTCON.468673

Matoza, R., Fee, D., and Garcés, M. 2010. Infrasonic tremor wavefield of the Pu`u `Ō`ō crater complex and lava tube system, Hawaii, in April 2007. Journal of Geophysical Research: Solid Earth, 115(B12). DOI: https://doi.org/10.1029/2009JB007192

McQuivey, R. 1973. . Summary of turbulence data from rivers, conveyance channels, and laboratory flumes. Publisher is required!. DOI: https://doi.org/10.3133/pp802B

McLaskey, G., and Glaser, S. 2010. Hertzian impact: experimental study of the force pulse and resulting stress waves. The Journal of the Acoustical Society of America, 128(3), p.1087–1096. DOI: https://doi.org/10.1121/1.3466847

Michlmayr, G., Chalari, A., Clarke, A., and Or, D. 2016. Fiber-optic high-resolution acoustic emission (AE) monitoring of slope failure. Landslides, 14(3), p.1139–1146. DOI: https://doi.org/10.1007/s10346-016-0776-5

Misset, C., Recking, A., Legout, C., Bakker, M., Bodereau, N., Borgniet, L., Cassel, M., Geay, T., Gimbert, F., Navratil, O., Piegay, H., Valsangkar, N., Cazilhac, M., Poirel, A., and Zanker, S. 2020. Combining multi-physical measurements to quantify bedload transport and morphodynamics interactions in an Alpine braiding river reach. Geomorphology, 351, p.106877. DOI: https://doi.org/10.1016/j.geomorph.2019.106877

Mizuyama, T., Laronne, J., Nonaka, M., Sawada, T., Satofuka, Y., Matsuoka, M., Yamashita, S., Sako, Y., Tamaki, S., Watari, M., and Yamaguchi, S. 2010. Calibration of a passive acoustic bedload monitoring system in Japanese mountain rivers. US Geological Survey Scientific Investigations Report, 5091, p.296–318.

Mizuyama, T., Oda, A., Laronne, J., Nonaka, M., and Matsuoka, M. Laboratory tests of a Japanese pipe geophone for continuous acoustic monitoring of coarse bedload. In US Geological Survey Scientific Investigations Report, volume 5091, page 319–335. 2010b.

Nasr, M., Geay, T., Zanker, S., and Recking, A. 2022. A Physical Model for Acoustic Noise Generated by Bedload Transport in Rivers. Journal of Geophysical Research: Earth Surface, 127(1). DOI: https://doi.org/10.1029/2021JF006167

Nativ, R., Turowski, J., Chang, J., Hovius, N., Yang, C., Chen, W., Chang, W., and Laronne, J. 2025. Stationary Boulders Increase River Seismic Frequency via Turbulence. Geophysical Research Letters, 52(6). DOI: https://doi.org/10.1029/2024GL113784

Nelson, J., McLean, S., and Wolfe, S. 1993. Mean flow and turbulence fields over two‐dimensional bed forms. Water Resources Research, 29(12), p.3935–3953. DOI: https://doi.org/10.1029/93WR01932

Nikora, V. 3 Hydrodynamics of gravel-bed rivers: scale issues, page 61–81. Elsevier, 2007. DOI: https://doi.org/10.1016/S0928-2025(07)11113-5

Norton, G., and Novarini, J. 2001. On the relative role of sea-surface roughness and bubble plumes in shallow-water propagation in the low-kilohertz region. The Journal of the Acoustical Society of America, 110(6), p.2946–2955. DOI: https://doi.org/10.1121/1.1414883

Ohiduzzaman, M., Sirin, O., Kassem, E., and Rochat, J. 2016. State-of-the-Art Review on Sustainable Design and Construction of Quieter Pavements—Part 1: Traffic Noise Measurement and Abatement Techniques. Sustainability, 8(8), p.742. DOI: https://doi.org/10.3390/su8080742

Osborne, W., Hodge, R., Love, G., Hawkin, P., and Hawkin, R. 2021. Babbling brook to thunderous torrent: Using sound to monitor river stage. Earth Surface Processes and Landforms, 46(13), p.2656–2670. DOI: https://doi.org/10.1002/esp.5199

Osborne, W., Hodge, R., Love, G., Hawkin, P., and Hawkin, R. 2022. The Influence of In‐Channel Obstacles on River Sound. Water Resources Research, 58(4). DOI: https://doi.org/10.1029/2021WR031567

Pandey, A., Shragge, J., Chambers, D., and Girard, A. 2023. Developing a distributed acoustic sensing seismic land streamer: Concept and validation. Geophysics, 88(6), p.WC59–WC67. DOI: https://doi.org/10.1190/geo2023-0072.1

Parker, T., Shatalin, S., and Farhadiroushan, M. 2014. Distributed Acoustic Sensing – a new tool for seismic applications. First Break, 32(2). DOI: https://doi.org/10.3997/1365-2397.2013034

Pereira, A., Harris, D., Tyack, P., and Matias, L. 2020. On the use of the Lloyd’s Mirror effect to infer the depth of vocalizing fin whales. The Journal of the Acoustical Society of America, 148(5), p.3086–3101. DOI: https://doi.org/10.1121/10.0002426

Petrut, T., Geay, T., Gervaise, C., Belleudy, P., and Zanker, S. 2018. Passive acoustic measurement of bedload grain size distribution using self-generated noise. Hydrology and Earth System Sciences, 22(1), p.767–787. DOI: https://doi.org/10.5194/hess-22-767-2018

Piégay, H., Arnaud, F., Belletti, B., Bertrand, M., Bizzi, S., Carbonneau, P., Dufour, S., Liébault, F., Ruiz‐Villanueva, V., and Slater, L. 2020. Remotely sensed rivers in the Anthropocene: state of the art and prospects. Earth Surface Processes and Landforms, 45(1), p.157–188. DOI: https://doi.org/10.1002/esp.4787

Rickenmann, D.. (2017). Bedload Transport Measurements with Geophones, Hydrophones, and Underwater Microphones (Passive Acoustic Methods). DOI: https://doi.org/10.1002/9781118971437.ch7

Robert, A. 1997. Characteristics of velocity profiles along riffle-pool sequences and estimates of bed shear stress. Geomorphology, 19(1–2), p.89–98. DOI: https://doi.org/10.1016/S0169-555X(96)00049-9

Robert, A., Roy, A., and De Serres, B. 1992. Changes in velocity profiles at roughness transitions in coarse grained channels. Sedimentology, 39(5), p.725–735. DOI: https://doi.org/10.1111/j.1365-3091.1992.tb02149.x

Rockwell, D., and Naudascher, E. 1979. Self-sustained oscillations of impinging free shear layers. Annu. Rev. Fluid Mech., 11(1), p.67–94. DOI: https://doi.org/10.1146/annurev.fl.11.010179.000435

Rodríguez Tribaldos, V., and Ajo‐Franklin, J. 2021. Aquifer Monitoring Using Ambient Seismic Noise Recorded With Distributed Acoustic Sensing (DAS) Deployed on Dark Fiber. Journal of Geophysical Research: Solid Earth, 126(4). DOI: https://doi.org/10.1029/2020JB021004

Ronan, T., Lees, J., Mikesell, T., Anderson, J., and Johnson, J. 2017. Acoustic and Seismic Fields of Hydraulic Jumps at Varying Froude Numbers. Geophysical Research Letters, 44(19), p.9734–9741. DOI: https://doi.org/10.1002/2017GL074511

Rossi, M., Wisén, R., Vignoli, G., and Coni, M. 2022. Assessment of Distributed Acoustic Sensing (DAS) performance for geotechnical applications. Engineering Geology, 306, p.106729. DOI: https://doi.org/10.1016/j.enggeo.2022.106729

Roth, D., Finnegan, N., Brodsky, E., and Stark, C. 2011. A collision-based model for measuring bedload transport from the seismic waves generated by rivers. In AGU Fall Meeting Abstracts (pp. 22 –05).

Roth, D., Finnegan, N., Brodsky, E., Cook, K., Stark, C., and Wang, H. 2014. Migration of a coarse fluvial sediment pulse detected by hysteresis in bedload generated seismic waves. Earth and Planetary Science Letters, 404, p.144–153. DOI: https://doi.org/10.1016/j.epsl.2014.07.019

Roth, D., Brodsky, E., Finnegan, N., Rickenmann, D., Turowski, J., and Badoux, A. 2016. Bed load sediment transport inferred from seismic signals near a river. Journal of Geophysical Research: Earth Surface, 121(4), p.725–747. DOI: https://doi.org/10.1002/2015JF003782

Roth, D., Finnegan, N., Brodsky, E., Rickenmann, D., Turowski, J., Badoux, A., and Gimbert, F. 2017. Bed load transport and boundary roughness changes as competing causes of hysteresis in the relationship between river discharge and seismic amplitude recorded near a steep mountain stream. Journal of Geophysical Research: Earth Surface, 122(5), p.1182–1200. DOI: https://doi.org/10.1002/2016JF004062

Roth, D., Bezada, M., Jin, G., and Titov, A.. (2023). A river on fiber: spatially continuous fluvial monitoring with distributed acoustic sensing – Data, Matlab Scripts and App. DOI: https://doi.org/10.22541/essoar.170688759.92957255/v1

Schenato, L. 2017. A Review of Distributed Fibre Optic Sensors for Geo-Hydrological Applications. Applied Sciences, 7(9), p.896. DOI: https://doi.org/10.3390/app7090896

Schmandt, B., Aster, R., Scherler, D., Tsai, V., and Karlstrom, K. 2013. Multiple fluvial processes detected by riverside seismic and infrasound monitoring of a controlled flood in the Grand Canyon. Geophysical Research Letters, 40(18), p.4858–4863. DOI: https://doi.org/10.1002/grl.50953

Schmandt, B., Gaeuman, D., Stewart, R., Hansen, S., Tsai, V., and Smith, J. 2017. Seismic array constraints on reach-scale bedload transport. Geology, 45(4), p.299–302. DOI: https://doi.org/10.1130/G38639.1

Sebok, E., Duque, C., Engesgaard, P., and Boegh, E. 2015. Application of Distributed Temperature Sensing for coupled mapping of sedimentation processes and spatio‐temporal variability of groundwater discharge in soft‐bedded streams. Hydrological Processes, 29(15), p.3408–3422. DOI: https://doi.org/10.1002/hyp.10455

Sklar, L., and Dietrich, W. 2004. A mechanistic model for river incision into bedrock by saltating bed load. Water Resources Research, 40(6). DOI: https://doi.org/10.1029/2003WR002496

Taylor, G. 1938. The Spectrum of Turbulence. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 164(919), p.476–490. DOI: https://doi.org/10.1098/rspa.1938.0032

Tennekes, H., and Lumley, J. 1972. . A First Course in Turbulence. The MIT Press. DOI: https://doi.org/10.7551/mitpress/3014.001.0001

Thorne, P., and Hanes, D. 2002. A review of acoustic measurement of small-scale sediment processes. Continental Shelf Research, 22(4), p.603–632. DOI: https://doi.org/10.1016/S0278-4343(01)00101-7

Thorne, P. 2014. An overview of underwater sound generated by interparticle collisions and its application to the measurements of coarse sediment bedload transport. Earth Surface Dynamics, 2(2), p.531–543. DOI: https://doi.org/10.5194/esurf-2-531-2014

Tinkler, K. 1997. Critical flow in rockbed streams with estimated values for Manning’s n. Geomorphology, 20(1–2), p.147–164. DOI: https://doi.org/10.1016/S0169-555X(97)00011-1

Tonina, D., and Buffington, J. 2009. Hyporheic Exchange in Mountain Rivers I: Mechanics and Environmental Effects. Geography Compass, 3(3), p.1063–1086. DOI: https://doi.org/10.1111/j.1749-8198.2009.00226.x

Tonolla, D., Lorang, M., Heutschi, K., and Tockner, K. 2009. A flume experiment to examine underwater sound generation by flowing water. Aquatic Sciences, 71(4), p.449–462. DOI: https://doi.org/10.1007/s00027-009-0111-5

Tonolla, D., Acuña, V., Lorang, M., Heutschi, K., and Tockner, K. 2010. A field‐based investigation to examine underwater soundscapes of five common river habitats. Hydrological Processes, 24(22), p.3146–3156. DOI: https://doi.org/10.1002/hyp.7730

Tonolla, D., Lorang, M., Heutschi, K., Gotschalk, C., and Tockner, K. 2011. Characterization of spatial heterogeneity in underwater soundscapes at the river segment scale. Limnology and Oceanography, 56(6), p.2319–2333. DOI: https://doi.org/10.4319/lo.2011.56.6.2319

Trimble, D., and Machette, M. 2003. . Geologic Map of the Greater Denver Area, Front Range Urban Corridor. U.S. DOI: https://doi.org/10.3133/ofr0325

Tsai, V., Minchew, B., Lamb, M., and Ampuero, J. 2012. A physical model for seismic noise generation from sediment transport in rivers. Geophysical Research Letters, 39(2). DOI: https://doi.org/10.1029/2011GL050255

Urick, R. Principles of underwater sound. McGraw-Hill, New York, 3rd edition, 1983.

U.S. Geological Survey. USGS 3D Elevation Program Lidar Point Cloud CO SoPlatteRiver Lot5 2013 LAS 2015. 2015. https://portal.opentopography.org/usgsDataset.jsp?dsid=USGS_LPC_CO_SoPlatteRiver_Lot5_2013_LAS_2015. accessed through OpenTopography at URL.

U.S. Geological Survey. (2016). National Water Information System data available on the World Wide Web (USGS Water Data for the Nation).

Urick, R. 1983. . Principles of underwater sound. McGraw-Hill.

Van Horn, R.. (1972). Surficial and Bedrock Geologic Map of the Golden Quadrangle.

Walter, F., Gräff, D., Lindner, F., Paitz, P., Köpfli, M., Chmiel, M., and Fichtner, A. 2020. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain. Nature Communications, 11(1). DOI: https://doi.org/10.1038/s41467-020-15824-6

Wang, Y., You, Q., and Hao, T. 2022. Estimating the Shear-Wave Velocities of Shallow Sediments in the Yellow Sea Using Ocean-Bottom-Seismometer Multicomponent Scholte-Wave Data. Frontiers in Earth Science, 10. DOI: https://doi.org/10.3389/feart.2022.812744

Winberry, P., Anandakrishnan, S., Wiens, D., and Alley, R. 2013. Nucleation and seismic tremor associated with the glacial earthquakes of Whillans Ice Stream, Antarctica. Geophysical Research Letters, 40(2), p.312–315. DOI: https://doi.org/10.1002/grl.50130

Wohl, E., and Thompson, D. 2000. Velocity characteristics along a small step-pool channel. Earth Surface Processes and Landforms, 25(4), p.353–367. DOI: https://doi.org/10.1002/(SICI)1096-9837(200004)25:4<353::AID-ESP59>3.0.CO;2-5

Wright, S., and Kaplinski, M. 2011. Flow structures and sandbar dynamics in a canyon river during a controlled flood, Colorado River, Arizona. Journal of Geophysical Research: Earth Surface, 116(F1). DOI: https://doi.org/10.1029/2009JF001442

Wysocki, L., Amoser, S., and Ladich, F. 2007. Diversity in ambient noise in European freshwater habitats: Noise levels, spectral profiles, and impact on fishes. The Journal of the Acoustical Society of America, 121(5), p.2559–2566. DOI: https://doi.org/10.1121/1.2713661

Wyss, C., Rickenmann, D., Fritschi, B., Turowski, J., Weitbrecht, V., Travaglini, E., Bardou, E., and Boes, R. 2016. Laboratory flume experiments with the S wiss plate geophone bed load monitoring system: 2. Application to field sites with direct bed load samples. Water Resources Research, 52(10), p.7760–7778. DOI: https://doi.org/10.1002/2016WR019283

Yang, Y., Atterholt, J., Shen, Z., Muir, J., Williams, E., and Zhan, Z. 2021. Sub‐Kilometer Correlation Between Near‐Surface Structure and Ground Motion Measured With Distributed Acoustic Sensing. Geophysical Research Letters, 49(1). DOI: https://doi.org/10.1029/2021GL096503

Yang, J., Shragge, J., and Jin, G. 2022. Filtering Strategies for Deformation-Rate Distributed Acoustic Sensing. Sensors, 22(22), p.8777. DOI: https://doi.org/10.3390/s22228777

Zhang, Y.T., Frank, C., Rangayyan, R., and Bell, G. 1992. Mathematical modeling and spectrum analysis of the physiological patello-femoral pulse train produced by slow knee movement. IEEE Transactions on Biomedical Engineering, 39(9), p.971–979. DOI: https://doi.org/10.1109/10.256431

Downloads

Published

2025-11-17

How to Cite

Roth, D., Bezada, M., Jin, G., Masteller, C., Siegfried, M., Titov, A., & Tate, B. (2025). A River on Fiber: High Resolution Fluvial Monitoring with Distributed Acoustic Sensing. Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.1696

Issue

Section

Articles