Potential for Continental Scientific Drilling to Inform Fault Mechanics and Earthquake Science
DOI:
https://doi.org/10.26443/seismica.v4i2.1700Keywords:
earthquake, fault mechanics, fault geometry, earthquake hazard, Near-Fault Observatory, fault drilling, subsurface fluid flowAbstract
Our understanding of fault mechanics and earthquake processes remains limited, largely due to minimal direct observations near active faults at seismogenic depths. This lack of data restricts our ability to accurately assess and mitigate both natural and human-induced seismic hazards. However, recent advancements in drilling capabilities and downhole sensing technologies offer an opportunity: the ability to observe the physical conditions within a volume near active fault zones. In this contribution, we highlight how scientific drilling can provide access to the near-fault environment, enabling measurements of the stress, temperature, fluid pressure, and rock properties at depths where ruptures initiate, propagate, and arrest. These observations are essential to refine models of earthquake nucleation and dynamic rupture, bridging gaps between laboratory experiments, numerical simulations, and surface observations. These insights can advance fundamental understanding in earthquake science but also support the development of more effective seismic hazard assessments and risk mitigation strategies.
References
Abercrombie, R. E. (2014). Stress drops of repeating earthquakes on the San Andreas Fault at Parkfield. Geophysical Research Letters, 41(24), 8784–8791. https://doi.org/10.1002/2014GL062079
Abercrombie, R. E. (2015). Investigating uncertainties in empirical Green’s function analysis of earthquake source parameters. Journal of Geophysical Research: Solid Earth, 120(6), 4263–4277. https://doi.org/10.1002/2015JB011984
Abercrombie, R. E., Trugman, D. T., Shearer, P. M., Chen, X., Zhang, J., Pennington, C. N., Hardebeck, J. L., Goebel, T. H. W., & Ruhl, C. J. (2021). Does Earthquake Stress Drop Increase With Depth in the Crust? Journal of Geophysical Research: Solid Earth, 126(10), e2021JB022314. https://doi.org/10.1029/2021JB022314
Allam, A. A., Kroll, K. A., Milliner, C. W. D., & Richards-Dinger, K. B. (2019). Effects of Fault Roughness on Coseismic Slip and Earthquake Locations. Journal of Geophysical Research: Solid Earth, 124(11), 11336–11349. https://doi.org/10.1029/2018JB016216
Ampuero, J.-P., Ripperger, J., & Mai, P. M. (2006). Properties of Dynamic Earthquake Ruptures with Heterogeneous Stress Drop. In R. Abercrombie, A. McGarr, G. D. Toro, & H. Kanamori (Eds.), Earthquakes: Radiated Energy and the Physics of Faulting (pp. 255–261). American Geophysical Union (AGU). https://doi.org/10.1029/170GM25
Anselmetti, F., Ashwal, L., Ariztegui, D., Bohnhoff, M., Bomberg, M., Claeys, P., Eichelberger, J., Ellsworth, W. L., Goodenough, K., Heubeck, C., & others. (2020). ICDP Science Plan: 2020-2030. https://doi.org/10.2312/icdp.2020.001
Araki, E., Saffer, D. M., Kopf, A. J., Wallace, L. M., Kimura, T., Machida, Y., Ide, S., Davis, E., & IODP Expedition 365 shipboard scientists. (2017). Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust. Science, 356(6343), 1157–1160. https://doi.org/10.1126/science.aan3120
Baltay, A., Abercrombie, R., Chu, S., & Taira, T. (2024). The SCEC/USGS Community Stress Drop Validation Study Using the 2019 Ridgecrest Earthquake Sequence. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1009
Barton, C. A., & Zoback, M. D. (1994). Stress perturbations associated with active faults penetrated by boreholes: Possible evidence for near-complete stress drop and a new technique for stress magnitude measurement. Journal of Geophysical Research: Solid Earth, 99(B5), 9373–9390. https://doi.org/10.1029/93JB03359
Bense, V. F., Gleeson, T., Loveless, S. E., Bour, O., & Scibek, J. (2013). Fault zone hydrogeology. Earth-Science Reviews, 127, 171–192. https://doi.org/10.1016/j.earscirev.2013.09.008
Ben‐Zion, Y., Beroza, G. C., Bohnhoff, M., Gabriel, A., & Mai, P. M. (2022). A Grand Challenge International Infrastructure for Earthquake Science. Seismological Research Letters, 93(6), 2967–2968. https://doi.org/10.1785/0220220266
Brodsky, E. E., Mori, J., & Fulton, P. M. (2010). Drilling Into Faults Quickly After Earthquakes. Eos, Transactions American Geophysical Union, 91(27), 237–238. https://doi.org/10.1029/2010EO270001
Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research (1896-1977), 75(26), 4997–5009. https://doi.org/10.1029/JB075i026p04997
Callahan, O. A., Eichhubl, P., & Davatzes, N. C. (2020). Mineral precipitation as a mechanism of fault core growth. Journal of Structural Geology, 140, 104156. https://doi.org/10.1016/j.jsg.2020.104156
Carpenter, B. M., Marone, C., & Saffer, D. M. (2011). Weakness of the San Andreas Fault Revealed by Samples from the Active Fault Zone. Nature Geoscience, 4(4), 251–254. https://doi.org/10.1038/ngeo1089
Cochran, E. S., Page, M. T., van der Elst, N. J., Ross, Z. E., & Trugman, D. T. (2023). Fault Roughness at Seismogenic Depths and Links to Earthquake Behavior. The Seismic Record, 3(1), 37–47. https://doi.org/10.1785/0320220043
Dal Zilio, L., Giardini, D., Carbonell, R., & Wiemer, S. (2023). Harnessing the potential of digital twins in seismology. Nature Reviews Earth & Environment, 4(8), 510–512. https://doi.org/10.1038/s43017-023-00469-y
Dieterich, J. H. (1992). Earthquake nucleation on faults with rate-and state-dependent strength. Tectonophysics, 211(1), 115–134. https://doi.org/10.1016/0040-1951(92)90055-B
Fan, Z., Eichhubl, P., & Newell, P. (2019). Basement Fault Reactivation by Fluid Injection Into Sedimentary Reservoirs: Poroelastic Effects. Journal of Geophysical Research: Solid Earth, 124(7), 7354–7369. https://doi.org/10.1029/2018JB017062
Foulger, G. R., Wilson, M. P., Gluyas, J. G., Julian, B. R., & Davies, R. J. (2018). Global review of human-induced earthquakes. Earth-Science Reviews, 178, 438–514. https://doi.org/10.1016/j.earscirev.2017.07.008
Fulton, P. M., & Brodsky, E. E. (2016). In situ observations of earthquake-driven fluid pulses within the Japan Trench plate boundary fault zone. Geology, 44(10), 851–854. https://doi.org/10.1130/G38034.1
Fulton, P. M., Brodsky, E. E., Kano, Y., Mori, J., Chester, F., Ishikawa, T., Harris, R. N., Lin, W., Eguchi, N., Toczko, S., Expedition 343, 343T, & Scientists, K.-08. (2013). Low Coseismic Friction on the Tohoku-Oki Fault Determined from Temperature Measurements. Science, 342(6163), 1214–1217. https://doi.org/10.1126/science.1243641
Gabrielli, S., Akinci, A., Ventura, G., Napolitano, F., Del Pezzo, E., & De Siena, L. (2022). Fast changes in seismic attenuation of the upper crust due to fracturing and fluid migration: The 2016–2017 central italy seismic sequence. Frontiers in Earth Science, 10, 909698. https://doi.org/10.3389/feart.2022.909698.
Goebel, T. H. W., Kwiatek, G., Becker, T. W., Brodsky, E. E., & Dresen, G. (2017). What allows seismic events to grow big?: Insights from b-value and fault roughness analysis in laboratory stick-slip experiments. Geology, 45(9), 815–818. https://doi.org/10.1130/G39147.1
Goswami, D., Hazarika, P., & Roy, S. (2020). In Situ Stress Orientation From 3 km Borehole Image Logs in the Koyna Seismogenic Zone, Western India: Implications for Transitional Faulting Environment. Tectonics, 39(1), e2019TC005647. https://doi.org/10.1029/2019TC005647
Guglielmi, Y., Cook, P., Soom, F., Schoenball, M., Dobson, P., & Kneafsey, T. (2021). In Situ Continuous Monitoring of Borehole Displacements Induced by Stimulated Hydrofracture Growth. Geophysical Research Letters, 48(4), e2020GL090782. https://doi.org/10.1029/2020GL090782
Gupta, H., Purnachandra Rao, N., Roy, S., Arora, K., Tiwari, V. M., Patro, P. K., Satyanarayana, H. V. S., Shashidhar, D., Mallika, K., Akkiraju, V. V., Goswami, D., Vyas, D., Ravi, G., Srinivas, K. N. S. S. S., Srihari, M., Mishra, S., Dubey, C. P., Raju, D. C. V., Borah, U., … Nayak, S. (2015). Investigations related to scientific deep drilling to study reservoir-triggered earthquakes at Koyna, India. International Journal of Earth Sciences, 104(6), 1511–1522. https://doi.org/10.1007/s00531-014-1128-0
Haddad, M., & Eichhubl, P. (2023). Fault Reactivation in Response to Saltwater Disposal and Hydrocarbon Production for the Venus, TX, Mw 4.0 Earthquake Sequence. Rock Mechanics and Rock Engineering, 56(3), 2103–2135. https://doi.org/10.1007/s00603-022-03083-4
Harris, R. A. (2017). Large earthquakes and creeping faults. Reviews of Geophysics, 55(1), 169–198. https://doi.org/10.1002/2016RG000539 Heimisson, E. R. (2020). Crack to pulse transition and magnitude statistics during earthquake cycles on a self-similar rough fault. Earth and Planetary Science Letters, 537, 116202. https://doi.org/10.1016/j.epsl.2020.116202
Hickman, S., Sibson, R., & Bruhn, R. (1995). Introduction to Special Section: Mechanical Involvement of Fluids in Faulting. Journal of Geophysical Research: Solid Earth, 100(B7), 12831–12840. https://doi.org/10.1029/95JB01121
Janku-Capova, L., Sutherland, R., Townend, J., Doan, M.-L., Massiot, C., Coussens, J., & Célérier, B. (2018). Fluid Flux in Fractured Rock of the Alpine Fault Hanging-Wall Determined from Temperature Logs in the DFDP-2B Borehole, New Zealand. Geochemistry, Geophysics, Geosystems, 19(8), 2631–2646. https://doi.org/10.1029/2017GC007317
Jin, G., & Roy, B. (2017). Hydraulic-fracture geometry characterization using low-frequency DAS signal. The Leading Edge, 36(12), 975–980. https://doi.org/10.1190/tle36120975.1
Johnson, K. M. (2013). Slip rates and off-fault deformation in Southern California inferred from GPS data and models. Journal of Geophysical Research: Solid Earth, 118(10), 5643–5664. https://doi.org/10.1002/jgrb.50365
Karrenbach, M., Cole, S., Ridge, A., Boone, K., Kahn, D., Rich, J., Silver, K., & Langton, D. (2018). Fiber-optic distributed acoustic sensing of microseismicity, strain and temperature during hydraulic fracturing. Geophysics, 84(1), D11–D23. https://doi.org/10.1190/geo2017-0396.1
Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., & Naoshi Hirata. (2012). Propagation of Slow Slip Leading Up to the 2011 Mw 9.0 Tohoku-Oki Earthquake. Science, 335(6069), 705–708. https://doi.org/10.1126/science.1215141
Kemna, K. B., Peña Castro, A. F., Harrington, R. M., & Cochran, E. S. (2020). Using a Large-n Seismic Array to Explore the Robustness of Spectral Estimations. Geophysical Research Letters, 47(21), e2020GL089342. https://doi.org/10.1029/2020GL089342
Kemna, K. B., Verdecchia, A., & Harrington, R. M. (2021). Spatio-Temporal Evolution of Earthquake Static Stress Drop Values in the 2016–2017 Central Italy Seismic Sequence. Journal of Geophysical Research: Solid Earth, 126(11), e2021JB022566. https://doi.org/10.1029/2021JB022566
Kivi, I. R., Boyet, A., Wu, H., Walter, L., Hanson-Hedgecock, S., Parisio, F., & Vilarrasa, V. (2023). Global physics-based database of injection-induced seismicity. Earth System Science Data, 15(7), 3163–3182. https://doi.org/10.5194/essd-15-3163-2023
Kroll, K. A., & Cochran, E. S. (2021). Stress Controls Rupture Extent and Maximum Magnitude of Induced Earthquakes. Geophysical Research Letters, 48(11), e2020GL092148. https://doi.org/10.1029/2020GL092148
Kumazawa, T., & Ogata, Y. (2024). Spatial and temporal variations of the 3-year earthquake swarm activities leading up to the M7.6 Noto Peninsula earthquake and interpretations of their activities. Earth, Planets and Space, 76(1), 164. https://doi.org/10.1186/s40623-024-02112-6
Lachenbruch, A. H., & Sass, J. H. (1992). Heat flow from Cajon Pass, fault strength, and tectonic implications. Journal of Geophysical Research: Solid Earth, 97(B4), 4995–5015. https://doi.org/10.1029/91JB01506
Lapusta, N., & Rice, J. R. (2003). Nucleation and early seismic propagation of small and large events in a crustal earthquake model. Journal of Geophysical Research: Solid Earth, 108(B4). https://doi.org/10.1029/2001JB000793
Lay, V., Buske, S., Townend, J., Kellett, R., Savage, M., Schmitt, D. R., Constantinou, A., Eccles, J. D., Gorman, A. R., Bertram, M., Hall, K., Lawton, D., & Kofman, R. (2021). 3D Active Source Seismic Imaging of the Alpine Fault Zone and the Whataroa Glacial Valley in New Zealand. Journal of Geophysical Research: Solid Earth, 126(12), e2021JB023013. https://doi.org/10.1029/2021JB023013
Lellouch, A., Schultz, R., Lindsey, N. J., Biondi, B. L., & Ellsworth, W. L. (2021). Low-Magnitude Seismicity With a Downhole Distributed Acoustic Sensing Array—Examples From the FORGE Geothermal Experiment. Journal of Geophysical Research: Solid Earth, 126(1), e2020JB020462. https://doi.org/10.1029/2020JB020462
Lin, W., Conin, M., Moore, J. C., Chester, F. M., Nakamura, Y., Mori, J. J., Anderson, L., Brodsky, E. E., Eguchi, N., Scientists, E. 343, Cook, B., Jeppson, T., Wolfson-Schwehr, M., Sanada, Y., Saito, S., Kido, Y., Hirose, T., Behrmann, J. H., Ikari, M., … Demian Saffer. (2013). Stress State in the Largest Displacement Area of the 2011 Tohoku-Oki Earthquake. Science, 339(6120), 687–690. https://doi.org/10.1126/science.1229379
Lindsey, N. J., & Martin, E. R. (2021). Fiber-Optic Seismology [Journal Article]. Annual Review of Earth and Planetary Sciences, 49(Volume 49, 2021), 309–336. https://doi.org/10.1146/annurev-earth-072420-065213
Lockner, D. A., Morrow, C., Moore, D., & Hickman, S. (2011). Low strength of deep San Andreas fault gouge from SAFOD core. Nature, 472(7341), 82–85. https://doi.org/10.1038/nature09927
Ma, K.-F., Tanaka, H., Song, S.-R., Wang, C.-Y., Hung, J.-H., Tsai, Y.-B., Mori, J., Song, Y.-F., Yeh, E.-C., Soh, W., Sone, H., Kuo, L.-W., & Wu, H.-Y. (2006). Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature, 444(7118), 473–476. https://doi.org/10.1038/nature05253
Ma, K.-F., von Specht, S., Kuo, L.-W., Huang, H.-H., Lin, C.-R., Lin, C.-J., Ku, C.-S., Wu, E.-S., Wang, C.-Y., Chang, W.-Y., & Jousset, P. (2024). Broad-band strain amplification in an asymmetric fault zone observed from borehole optical fiber and core. Communications Earth & Environment, 5(1), 402. https://doi.org/10.1038/s43247-024-01558-6
Ma, T., Chen, P., & Zhao, J. (2016). Overview on vertical and directional drilling technologies for the exploration and exploitation of deep petroleum resources. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2(4), 365–395. https://doi.org/10.1007/s40948-016-0038-y
Majer, E. L., Baria, R., Stark, M., Oates, S., Bommer, J., Smith, B., & Asanuma, H. (2007). Induced seismicity associated with Enhanced Geothermal Systems. Geothermics, 36(3), 185–222. https://doi.org/10.1016/j.geothermics.2007.03.003
Massiot, C., Célérier, B., Doan, M.-L., Little, T. A., Townend, J., McNamara, D. D., Williams, J., Schmitt, D. R., Toy, V. G., Sutherland, R., Janku-Capova, L., Upton, P., & Pezard, P. A. (2018). The Alpine Fault Hangingwall Viewed From Within: Structural Analysis of Ultrasonic Image Logs in the DFDP-2B Borehole, New Zealand. Geochemistry, Geophysics, Geosystems, 19(8), 2492–2515. https://doi.org/10.1029/2017GC007368
McLaskey, G. C. (2019). Earthquake Initiation From Laboratory Observations and Implications for Foreshocks. Journal of Geophysical Research: Solid Earth, 124(12), 12882–12904. https://doi.org/10.1029/2019JB018363
Mellors, R. J., Abbott, R., Steedman, D., Podrasky, D., & Pitarka, A. (2021). Modeling Subsurface Explosions Recorded on a Distributed Fiber Optic Sensor. Journal of Geophysical Research: Solid Earth, 126(12), e2021JB022690. https://doi.org/10.1029/2021JB022690
Moore, D. E., & Rymer, M. J. (2012). Correlation of clayey gouge in a surface exposure of serpentinite in the San Andreas Fault with gouge from the San Andreas Fault Observatory at Depth (SAFOD). Journal of Structural Geology, 38, 51–60. https://doi.org/10.1016/j.jsg.2011.11.014
Oskin, M., Perg, L., Blumentritt, D., Mukhopadhyay, S., & Iriondo, A. (2007). Slip rate of the Calico fault: Implications for geologic versus geodetic rate discrepancy in the Eastern California Shear Zone. Journal of Geophysical Research: Solid Earth, 112(B3). https://doi.org/10.1029/2006JB004451
Parolai, S., & Oth, A. (2022). On the Limitations of Spectral Source Parameter Estimation for Minor and Microearthquakes. Bulletin of the Seismological Society of America, 112(5), 2364–2375. https://doi.org/10.1785/0120220050
Petersen, M. D., Shumway, A. M., Powers, P. M., Field, E. H., Moschetti, M. P., Jaiswal, K. S., Milner, K. R., Rezaeian, S., Frankel, A. D., Llenos, A. L., Michael, A. J., Altekruse, J. M., Ahdi, S. K., Withers, K. B., Mueller, C. S., Zeng, Y., Chase, R. E., Salditch, L. M., Luco, N., … Witter, R. C. (2024). The 2023 US 50-State National Seismic Hazard Model: Overview and implications. Earthquake Spectra, 40(1), 5–88. https://doi.org/10.1177/87552930231215428
Prieto, G. A., Thomson, D. J., Vernon, F. L., Shearer, P. M., & Parker, R. L. (2007). Confidence intervals for earthquake source parameters. Geophysical Journal International, 168(3), 1227–1234. https://doi.org/10.1111/j.1365-246X.2006.03257.x
Reches, Z., & Ito, H. (2007). Scientific Drilling of Active Faults: Past and Future. In U. Harms, C. Koeberl, & M. D. Zoback (Eds.), Continental Scientific Drilling: A Decade of Progress, and Challenges for the Future (pp. 235–258). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-68778-8_6
Ross, Z. E., Cochran, E. S., Trugman, D. T., & Jonathan D. Smith. (2020). 3D fault architecture controls the dynamism of earthquake swarms. Science, 368(6497), 1357–1361. https://doi.org/10.1126/science.abb0779
Rowe, C. D., & Griffith, W. A. (2015). Do faults preserve a record of seismic slip: A second opinion. Journal of Structural Geology, 78, 1–26. https://doi.org/10.1016/j.jsg.2015.06.006
Ruhl, C. J., Abercrombie, R. E., Smith, K. D., & Zaliapin, I. (2016). Complex spatiotemporal evolution of the 2008 Mw 4.9 Mogul earthquake swarm (Reno, Nevada): Interplay of fluid and faulting. Journal of Geophysical Research: Solid Earth, 121(11), 8196–8216. https://doi.org/10.1002/2016JB013399
Ruiz, S., Metois, M., Fuenzalida, A., Ruiz, J., Leyton, F., Grandin, R., Vigny, C., Madariaga, R., & Campos, J. (2014). Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake. Science, 345(6201), 1165–1169. https://doi.org/10.1126/science.1256074
Savage, H. M., Kirkpatrick, J. D., Mori, J. J., Brodsky, E. E., Ellsworth, W. L., Carpenter, B. M., Chen, X., Cappa, F., & Kano, Y. (2017). Scientific Exploration of Induced SeisMicity hackbreak and Stress (SEISMS). Scientific Drilling, 23, 57–63. https://doi.org/10.5194/sd-23-57-2017
Shearer, P. M., Prieto, G. A., & Hauksson, E. (2006). Comprehensive analysis of earthquake source spectra in southern California. Journal of Geophysical Research: Solid Earth, 111(B6). https://doi.org/10.1029/2005JB003979
Silva, V., Pagani, M., Schneider, J., & Henshaw, P. (2019). Assessing seismic hazard and risk globally for an earthquake resilient world | UNDRR. Global Assessment Report on Disaster Risk Reduction. In United Nations Office for Disaster Risk Reduction. https://www.undrr.org/publication/assessing-seismic-hazard-and-risk-globally-%20earthquake-resilient-world Sone, H., & Uchide, T. (2016). Spatiotemporal evolution of a fault shear stress patch due to viscoelastic interseismic fault zone rheology. Tectonophysics, 684, 63–75. https://doi.org/10.1016/j.tecto.2016.04.017
Takano, S., Hiramatsu, Y., & Yukutake, Y. (2024). The role of fluids in earthquake swarms in northeastern Noto Peninsula, central Japan: insights from source mechanisms. Earth, Planets and Space, 76(1), 151. https://doi.org/10.1186/s40623-024-02099-0
Talukdar, M., & Sone, H. (2024). Time-Dependent Deformation in the Damage Zone of the Chelungpu Fault System and Potential Stress Relaxation. Geophysical Research Letters, 51(2), e2023GL106237. https://doi.org/10.1029/2023GL106237
Talukdar, M., Sone, H., & Kuo, L.-W. (2022). Lithology and Fault-Related Stress Variations Along the TCDP Boreholes: The Stress State Before and After the 1999 Chi-Chi Earthquake. Journal of Geophysical Research: Solid Earth, 127(2), e2021JB023290. https://doi.org/10.1029/2021JB023290
Teodoriu, C., & Bello, O. (2021). An Outlook of Drilling Technologies and Innovations: Present Status and Future Trends. Energies, 14(15). https://doi.org/10.3390/en14154499
Tobin, H., Hirose, T., Ikari, M., Kanagawa, K., Kimura, G., Kinoshita, M., Kitajima, H., Saffer, D., Yamaguchi, A., Eguchi, N., Maeda, L., & Toczko, S. (2019). Expedition 358 Preliminary Report: NanTroSEIZE Plate Boundary Deep Riser 4: Nankai Seismogenic/Slow Slip Megathrust. In International Ocean Discovery Program Preliminary Report. International Ocean Discovery Program. https://doi.org/10.14379/iodp.pr.358.2019
Townend, J., Sutherland, R., & Toy, V. (2009). Deep Fault Drilling Project – Alpine Fault, New Zealand. Scientific Drilling, 8, 75–82. https://doi.org/10.2204/iodp.sd.8.12.2009 Wetzler, N., Brodsky, E. E., & Lay, T. (2016). Regional and stress drop effects on aftershock productivity of large megathrust earthquakes. Geophysical Research Letters, 43(23), 12,012-12,020. https://doi.org/10.1002/2016GL071104
White, J. A., & Foxall, W. (2016). Assessing induced seismicity risk at CO2 storage projects: Recent progress and remaining challenges. International Journal of Greenhouse Gas Control, 49, 413–424. https://doi.org/10.1016/j.ijggc.2016.03.021
William L. Ellsworth. (2013). Injection-Induced Earthquakes. Science, 341(6142), 1225942. https://doi.org/10.1126/science.1225942 Williams, R. T., & Fagereng, AAke. (2022). The Role of Quartz Cementation in the Seismic Cycle: A Critical Review. Reviews of Geophysics, 60(1), e2021RG000768. https://doi.org/10.1029/2021RG000768
Yamada, Y., Dugan, B., Hirose, T., & Saito, S. (2019). Riser Drilling: Access to Deep Subseafloor Science. Oceanography, 32(1), 95–97. https://doi.org/10.5670/oceanog.2019.127 Zhang, O., & Schmitt, D. R. (2025). Seismic Anisotropy of the Alpine Fault: Application of Machine Learning to Distributed Acoustic Sensing Borehole Seismics. 59th U.S. Rock Mechanics/Geomechanics Symposium, D041S056R004. https://doi.org/10.56952/ARMA-2025-0806
Zoback, M. D., & Healy, J. H. (1992). In situ stress measurements to 3.5 km depth in the Cajon Pass Scientific Research Borehole: Implications for the mechanics of crustal faulting. Journal of Geophysical Research: Solid Earth, 97(B4), 5039–5057. https://doi.org/10.1029/91JB02175 Zoback, M., Hickman, S., Ellsworth, W., & the SAFOD Science Team. (2011). Scientific Drilling Into the San Andreas Fault Zone – An Overview of SAFOD’s First Five Years. Scientific Drilling, 11, 14–28. https://doi.org/10.2204/iodp.sd.11.02.2011
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Elizabeth S. Cochran, Natalia Zakharova, Brett Carpenter, Folarin Kolawole, Nicholas W. Hayman, Hiroki Sone, Douglas R. Schmitt, Peter Eichhubl, William Ellsworth, Yves Guglielmi, Stephen Hickman, Harold J. Tobin

This work is licensed under a Creative Commons Attribution 4.0 International License.

