The 09 December 2024 Mw5.7 Parker Butte Earthquake: Orthogonal surface fracturing and associated ground disturbances near Yerington, Nevada, central Walker Lane
DOI:
https://doi.org/10.26443/seismica.v4i2.1702Keywords:
earthquake, surface rupture, Walker Lane, rapid responseAbstract
The Mw5.7 Parker Butte earthquake occurred on 09 December, 2024, ~24 km NNE of Yerington (western Nevada, USA) due to sinistral slip on an unmapped ENE-striking fault. Field reconnaissance and a drone survey were conducted within <1-8 days and ~1 month, respectively, after the earthquake. We observed a lack of surface rupture above the ENE-striking plane of the mainshock and most aftershocks, as well as surface fracturing along a NW-trending lineament orthogonal to the mainshock. Shaking effects included minor sediment failures, liquefaction features, and short-lived fracturing and refreezing features in ice on the Walker River and agricultural channels. Damage to infrastructure was minimal, only settlement and cracking of one bridge abutment fill prism. We estimate ground motions of up to 0.4 g and 23 cm/s. These observations provide valuable data about the effects of moderate magnitude earthquakes and highlight the importance of coordinated multidisciplinary geodetic, seismologic, and field geologic responses. The orthogonal faults indicated by the mainshock and the secondary surface fractures are part of a pattern in the region, where orthogonal faults have slipped in several historical earthquake sequences, establishing this as a common style of faulting within the complex network of faults that comprise the Walker Lane.
References
Abrahamson, N. A., Silva, W. J., & Kamai, R. (2014). Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra, 30(3), 1025–1055. https://doi.org/10.1193/070913EQS198M
Anderson, J. G., Biasi, G. P., Agster, S. A., & Wesnousky, S. G. (2021). Improved scaling relationships for seismic moment and average slip of strike-slip earthquakes incorporating fault-slip rate, fault width, and stress drop. Bulletin of the Seismological Society of America, 111(5), 2379–2392. https://doi.org/10.1785/0120210113
Angster, S. A., Wesnousky, S. G., Figueredo, P., Owen, L. A., & Hammer, S. (2019). Late Quaternary slip rates for faults of the central Walker Lane: Spatiotemporal strain release in a strike-slip fault system. Geosphere, 15(5), 1460–1478. https://doi.org/10.1130/GES02088.1
Barnhart, W. D., Hayes, G. P., & Gold, R. D. (2019). The July 2019 Ridgecrest, California, earthquake sequence: Kinematics of slip and stressing in cross-fault ruptures. Geophysical Research Letters, 46(21), 11859–11867. https://doi.org/10.1029/2019GL084741
Bogolub, K. R., Trugman, D. T., Jiang, Y., Hammond, W. C., Smith, K. D., Koehler, R. D., & Rowe, C. D. (2025). The M 5.7 Parker Butte Earthquake near Yerington, Nevada: Anatomy of a Dual-Plane Rupture in the Walker Lane from high-precision relocated earthquakes, InSAR, GPS and Strong Motion Data. Seismological Research Letters. https://doi.org/10.1785/0220250203
Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057–1085. https://doi.org/10.1193/070113EQS184M
Bormann, J., Hammond, W. C., Kreemer, C., & Blewitt, G. (2016). Accommodation of missing shear strain in the Central Walker Lane, western North America: Constraints from dense GPS measurements. Earth and Planetary Science Letters, 440, 169–177. https://doi.org/10.1016/j.epsl.2016.01.015
Bormann, J. M., Surpless, B. E., Caffee, M. W., & Wesnousky, S. G. (2012). Holocene earthquakes and late Pleistocene slip-rate estimates on the Wassuk Range fault zone, Nevada. Bulletin of the Seismological Society of America, 102(4), 1884–1891. https://doi.org/10.1785/0120110287
Brengman, C. M., Barnhart, W. D., Mankin, E. H., & Miller, C. N. (2019). Earthquake-scaling relationships from geodetically derived slip distributions. Bulletin of the Seismological Society of America, 109(5), 1701–1715. https://doi.org/10.1785/0120190048
Callaghan, E., & Gianella, V. P. (1935). The earthquake of January 30, 1934, at Excelsior Mountains, Nevada. Bulletin of the Seismological Society of America, 25, 161–168. https://doi.org/10.1785/BSSA0250020161
Campbell, K. W., & Bozorgnia, Y. (2014). NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra, 30(3), 1087–1115. https://doi.org/10.1193/062913EQS175M
Cashman, P. H., & Fontaine, S. A. (2000). Strain partitioning in the northern Walker Lane, western Nevada and northeastern California. Tectonophysics, 326, 111–130. https://doi.org/10.1016/S0040-1951(00)00149-9
Chiou, B. S.-J., & Youngs, R. R. (2014). Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30(3), 1117–1153. https://doi.org/10.1193/072813EQS21
Dee, S., Koehler, R. D., Elliott, A. J., Hatem, A. E., Pickering, A. J., Pierce, I., Seitz, G. G., Collett, C. M., Dawson, T. E., De Masi, C., dePolo, C. M., Hartshorn, E. J., Madugo, C. M., Trexler, C. C., Verdugo, D. M., Wesnousky, S. G., & Zachariasen, J. (2021). Surface rupture map of the 2020 M6.5 Monte Cristo Range earthquake, Esmeralda and Mineral counties, Nevada (p. 21) [Techreport]. Nevada Bureau of Mines.
dePolo, D. M., & dePolo, C. M. (2012). Earthquakes in Nevada: 1840’s to 2010 [Techreport]. Nevada Bureau of Mines.
Dong, S., Ucarkus, G., Wesnousky, S. G., Maloney, J., Kent, G., Driscoll, N., & Baskin, R. (2014). Strike-slip faulting along the Wassuk Range of the northern Walker Lane, Nevada. Geosphere, 10(1), 9. https://doi.org/10.1130/GES00912.1
DuRoss, C. B., Gold, R. D., Dawson, T. E., Scharer, K. M., Kendrick, K. J., Akciz, S. O., Angster, S. J., Bachhuber, J., Bacon, S., Bennett, S. E., & others. (2020). Surface displacement distributions for the July 2019 Ridgecrest, California, earthquake ruptures. Bulletin of the Seismological Society of America, 110(4), 1400–1418. https://doi.org/10.1785/0120200058
DuRoss, C. B., Reitman, N. G., Hatem, A. E., Mason, H. B., Lavrentiadis, G., Asimaki, D., Milliner, C., Karakaş, M., & Seçen, B. (2025). Are Field Observations of Surface Rupture Useful? An Example from the 2023 M w 7.8 Pazarcık, Turkey (Türkiye), Earthquake. Seismological Research Letters, 96(2A), 848–867. https://doi.org/10.1785/0220240280
Faulds, J. E., Coolbaugh, M. F., & Hinz, N. H. (2021). Inventory of structural settings for active geothermal systems and late Miocene (sim8 Ma) to Quaternary epithermal mineral deposits in the Basin and Range province of Nevada (Techreport Report 58; p. 27). Nevada Bureau of Mines.
Figueiredo, P. M., Hill, J. S., Merschat, A. J., Scheip, C. M., Stewart, K. G., Owen, L. A., Wooten, R. M., Carter, M. W., Szymanski, E., Horton, S. P., Wegmann, K. W., Bohnenstiehl, D. R., Thompson, G. W., Witt, A., Cattanach, B., & Douglas, T. (2022). The Mw5.1, 9 August 2020, Sparta earthquake, North Carolina: The first documented seismic surface rupture in the eastern United States. GSA Today, 32, 4–11. https://doi.org/10.1130/GSATG517A.1
Hammond, W. C., Kreemer, C., & Blewitt, G. (2024). Robust imaging of fault slip rates in the Walker Lane and western Great Basin from GPS data using a multi-block model approach. Journal of Geophysical Research: Solid Earth, 129(3), e2023JB028044. https://doi.org/10.1029/2023JB028044
Hammond, W. C., & Thatcher, W. (2007). Crustal deformation across the Sierra Nevada, northern Walker Lane, Basin and Range transition, western United States measured with GPS, 2000–2004. Journal of Geophysical Research, 112. https://doi.org/10.1029/2006JB004625
Hatch-Ibarra, R. L., Abercrombie, R. E., Ruhl, C. J., Smith, I. D., Hammond, W. C., & Pierce, I. K. (2022). The 2016 Nine Mile Ranch earthquakes: Hazard and tectonic implications of orthogonal conjugate faulting in the Walker Lane. Bulletin of the Seismological Society of America, 112, 1727–1741. https://doi.org/10.1785/0120210149
Hill, D. P. (2006). Unrest in Long Valley Caldera, California, 1978-2004. In C. Troise, G. De Natale, & C. R. J. Kilburn (Eds.), Mechanisms of activity and unrest at large calderas (Vol. 269, pp. 1–24). Geological Society, London. https://doi.org/10.1144/GSL.SP.2006.269.01.02
Ichinose, G. A., Smith, K. D., & Anderson, J. G. (1998). Moment tensor solutions of the 1994 to 1996 Double Spring Flat, Nevada, earthquake sequence and implications for local tectonic models. Bulletin of the Seismological Society of America, 88(6), 1363–1378. https://doi.org/10.1785/BSSA0880061363
Jowitt, S. M., Micander, R., Richards, M., Fisher, T., Reynolds, D., & Lu, C. (2024). The Nevada Mineral Industry 2023 (p. 96). Nevada Bureau of Mines.
Koehler, R. D., Dee, S., Elliott, A., Hatem, A., Pickering, A., Pierce, I. K., & Seitz, G. (2021). Field response and surface rupture characteristics of the 2020 M6.5 Monte Cristo Mountains earthquake, central Walker Lane, Nevada. Seismological Research Letters, 92(2A), 823–839. https://doi.org/10.1785/0220200371
Li, X., Huang, W., Pierce, I. K. D., Angster, S. J., & Wesnousky, S. G. (2017). Characterizing the Quaternary expression of active faulting along the Olinghouse, Carson, and Wabuska lineament of the Walker Lane. Geosphere, 13(6). https://doi.org/10.1130/GES01483.1
Lienkaemper, J. J., Baker, B., & McFarland, F. S. (2006). Surface slip associated with the 2004 Parkfield, California, earthquake measured on alinement arrays. Bulletin of the Seismological Society of America, 96(4B), S239–S249. https://doi.org/10.1785/0120050806
Moschetti, M. P., Aagaard, B. T., Ahdi, S. K., Altekruse, J., Boyd, O. S., Frankel, A. D., Herrick, J., Petersen, M. D., Powers, P. M., Rezaeian, S., & others. (2024). The 2023 US National Seismic Hazard Model: Ground-motion characterization for the conterminous United States. Earthquake Spectra, 40(2), 1158–1190. https://doi.org/10.1177/87552930231223995
Pierce, I. K. D., Wesnousky, S. G., Owen, L. A., Bormann, J. M., Li, X., & Caffee, M. (2021). Accommodation of plate motion in an incipient strike-slip system: The central Walker Lane. Tectonics, 40, e2019TC005612. https://doi.org/10.1029/2019TC005612
Pierce, I., & Koehler, R. D. (2023). 3D paleoseismology from iOS lidar and Structure from Motion photogrammetry: A case study on the Dog Valley fault, California. Seismica, 2(1). https://doi.org/10.26443/seismica.v2i1.208
Ponti, D. J., Blairm, J. L., Rosa, C. M., Thomas, K., Pickering, A. J., Akciz, S., Angster, S., Avouac, J., Bachhuber, J., Bacon, S., Barth, N., Bennett, S., Blake, K., Bork, S., Brooks, B., Bullard, T., Burgess, P., Chupik, C., Dawson, T., … Zinke, R. (2020). Documentation of surface fault rupture and ground deformation features produced by the Ridgecrest M6.4 and M7.1 earthquake sequence of July 4 and 5, 2019. Seismological Research Letters, 91(5), 2942–2959. https://doi.org/10.1785/0220190322
Purvance, M. D., Anooshehpoor, A., & Brune, J. N. (2008). Freestanding block overturning fragilities: Numerical simulation and experimental validation. Earthquake Engineering & Structural Dynamics, 37(5), 791–808.
Rymer, M. J., Tinsley III, J. C., Treiman, J. A., Arrowsmith, J. R., Clahan, K. B., Rosinski, A. M., Bryant, W. A., Snyder, H. A., Fuis, G. S., Toké, N. A., & others. (2006). Surface fault slip associated with the 2004 Parkfield, California, earthquake. Bulletin of the Seismological Society of America, 96(4B), S11–S27. https://doi.org/10.1785/0120050830
Say, M. C., & Zuza, A. V. (2021). Heterogenous late Miocene extension in the northern Walker Lane (California-Nevada, USA) demonstrates vertically decoupled crustal extension. Geosphere, 17(6), 1762–1785. https://doi.org/10.1130/GES02409.1
Scott, C., Bunds, M., Shirzaei, M., & Toké, N. (2020). Creep along the Central San Andreas Fault from surface fractures, topographic differencing, and InSAR. Journal of Geophysical Research: Solid Earth, 125(10), e2020JB019762. https://doi.org/10.1029/2020JB019762
Shea, H. N., & Barnhart, W. D. (2022). The Geodetic Centroid (gCent) Catalog: Global earthquake monitoring with satellite imaging geodesy. Bulletin of the Seismological Society of America, 112(6), 2946–2957. https://doi.org/10.1785/0120220072
Slemmons, D. B., Jones, A. E., & Gimlett, J. I. (1965). Catalog of Nevada earthquakes. Bulletin of the Seismological Society of America, 55(2), 537–583. https://doi.org/10.1785/BSSA0550020519
Smith, K. D., & Priestly, K. F. (1993). Aftershock stress release along active fault planes of the 1984 Round Valley, California earthquake sequence applying a time-domain stress drop method. Bulletin of the Seismological Society of America, 83(1), 144–159. https://doi.org/10.1785/BSSA0830010144
Smith, K. D., & Priestly, K. F. (2000). Faulting in the 1986 Chalfant, California, sequence: Local tectonics and earthquake source parameters. Bulletin of the Seismological Society of America, 90(4), 813–831. https://doi.org/10.1785/0119990129
Stewart, J., & Ernst, W. (1988). Tectonics of the Walker Lane belt, western Great Basin: Mesozoic and Cenozoic deformation in a zone of shear. In W. G. Ernst (Ed.), Metamorphism and crustal evolution of the western United States (Vol. 7, pp. 683–713). Prentice Hall Englewood Cliffs, New Jersey.
Stirling, M., Fitzgerald, M., Shaw, B., & Ross, C. (2024). New magnitude–Area scaling relations for the New Zealand national seismic hazard model 2022. Bulletin of the Seismological Society of America, 114(1), 137–149. https://doi.org/10.1785/0120230114
Toké, N. A., & Arrowsmith, J. R. (2015). Examining the cause of prehistoric ground deformation at the Dry Lake Valley Site along the creeping section of the San Andreas Fault, San Benito, California (p. 17) [Techreport]. Southern California Earthquake Center Annual Report #13147.
Toké, N. A., Arrowsmith, J. R., Young, J. J., & Crosby, C. J. (2006). Paleoseismic and postseismic observations of surface slip along the Parkfield segment of the San Andreas fault. Bulletin of the Seismological Society of America, 96(4B), S221–S238. https://doi.org/10.1785/0120050809
Trugman, D., Brune, J., Smith, K., Louie, J., & Kent, G. (2023). The rocks that did not fall: A multidisciplinary analysis of near-source ground motions from an active normal fault. AGU Advances, 4(2), e2023AV000885. https://doi.org/10.1029/2023AV000885
U.S. Department of Agriculture, Farm Services Agency. (2020). National Agriculture Imagery Program (NAIP).
US Geological Survey. (2023). Geoscience Data Acquisition for Western Nevada (GeoDAWN) project, 3D Elevation Program (3DEP), DOE Geothermal Technologies Office [Dataset]. https://www.usgs.gov/3d-elevation-program
Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002. https://doi.org/10.1785/BSSA0840040974
Wesnousky, S. G. (2005). Active faulting in the Walker Lane. Tectonics, 24, TC3009. https://doi.org/10.1029/2004TC001645
Wesnousky, S. G., Bormann, J. M., Kreemer, C., Hammond, W. C., & Brune, J. N. (2012). Neotectonics, Geodesy, Seismic Hazard in the northern Walker Lane of Western North America: Thirty kilometers of crustal shear and no strike-slip? Earth and Planetary Science Letters, 329–330, 133–140. https://doi.org/10.1016/j.epsl.2012.02.018
Yürür, T., Köse, O., Demirbağ, H., Özkaymak, Ç., & Selçuk, L. (2003). Could the coseismic fractures of a lake ice reflect the earthquake mechanism?:(Afyon earthquakes of 2 March 2002, Central Anatolia, Turkey). Geodinamica Acta, 16(2–6), 83–87. https://doi.org/10.1016/S0985-3111(03)00003-2
Zuckerman, M. G., Amos, C., Madugo, C., Elliott, A. J., Kottke, A. R., Goulet, C. A., Meng, X., & Caplan-Auerbach, J. (2020). Jumping rocks as an indicator of ground motion during the 4 July 2019 M6.4 Ridgecrest earthquake. Geological Society of America Abstracts, 52(6). https://doi.org/10.1130/abs/2020AM-356342
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rich Koehler, Christie Rowe, Dominik Vlaha, Simone Masoch, Nicole Hart-Wagoner, Yu Jiang, Kyren Bogolub, Daniel Trugman, Bill Hammond, Aren Crandall-Bear, Chris Kratt, Kayleigh Dohm, Jennifer Vlcan

This work is licensed under a Creative Commons Attribution 4.0 International License.