Bayesian Reassessment of Seismic Moment Tensors and Their Uncertainties in the Adriatic Sea Region

Authors

  • Jinyin Hu Australian National University
  • Hrvoje Tkalčić Research School of Earth Sciences, The Australian National University https://orcid.org/0000-0001-7072-490X
  • Thanh-Son Phạm Research School of Earth Sciences, The Australian National University https://orcid.org/0000-0002-9057-4416
  • Marijan Herak Department of Geophysics, Faculty of Science, University of Zagreb https://orcid.org/0000-0001-8560-9912
  • Iva Dasović Department of Geophysics, Faculty of Science, University of Zagreb https://orcid.org/0000-0003-4017-9271
  • Marija Mustać Brčić Department of Geophysics, Faculty of Science, University of Zagreb

DOI:

https://doi.org/10.26443/seismica.v4i2.1721

Abstract

The determination of seismic moment tensor (MT) parameters is subject to uncertainties from data noise and structural error due to the imperfect Earth model, which is rarely considered in regional earthquake catalogs. In this study, we apply a hierarchical Bayesian MT inversion with uncertainty quantification to seven moderate-earthquakes Mw 4.5–5.5 in the Adriatic Sea region. The event collection includes three in mainland Croatia: the 2020 Mw 5.4 Zagreb earthquake and its Mw 4.9 aftershock, and the Mw 5.0 foreshock of the 2020 Petrinja earthquake, two events in the offshore Adriatic Sea: the 2021 Mw 5.2 central Adriatic earthquake, the 2024 Mw 4.6 southern Adriatic earthquake, and two in Italy: the 2022 Mw 5.5 Costa Marchigiana-Pesarese earthquake, and the 2023 Mw 4.9 earthquake in Marradi (Tuscany). The inversion output features the source depth and the posterior distributions of the MT parameters, enabling the uncertainty quantification. Comparing our results with regional routine catalogs highlights the improvement in source determination, particularly in confidence of non-double-couple components when incorporating the data and structural uncertainties. The refined source mechanisms could be useful for understanding the complex geological settings, assessing the hazard potential, and further improving the regional earthquake catalogs in the Adriatic Sea region.

References

Albini, P. (2015). The Great 1667 Dalmatia Earthquake: An In-Depth Case Study. In SpringerBriefs in Earth Sciences. Springer International Publishing. https://doi.org/10.1007/978-3-319-16208-9

AlpArray Seismic Network. (2015). AlpArray Seismic Network (AASN) temporary component. AlpArray Working Group. https://doi.org/10.12686/alparray/z3_2015

Alvizuri, C., & Tape, C. (2018). Full Moment Tensor Analysis of Nuclear Explosions in North Korea. Seismological Research Letters, 89(6), 2139–2151. https://doi.org/10.1785/0220180158

Atalić, J., Uroš, M., Šavor Novak, M., Demšić, M., & Nastev, M. (2021). The Mw5.4 Zagreb (Croatia) earthquake of March 22, 2020: impacts and response. Bulletin of Earthquake Engineering, 19(9), 3461–3489. https://doi.org/10.1007/s10518-021-01117-w

Baize, S., Amoroso, S., Belić, N., Benedetti, L., Boncio, P., Budić, M., Cinti, F. R., Henriquet, M., Jamšek Rupnik, P., Kordić, B., Markušić, S., Minarelli, L., Pantosti, D., Pucci, S., Špelić, M., Testa, A., Valkaniotis, S., Vukovski, M., Atanackov, J., … Ricci, T. (2022). Environmental effects and seismogenic source characterization of the December 2020 earthquake sequence near Petrinja, Croatia. Geophysical Journal International, 230(2), 1394–1418. https://doi.org/10.1093/gji/ggac123

Basili, R., Kastelic, V., Demircioglu Tumsa, M. B., Garcia Moreno, D., Nemser, E. S., Petricca, P., Sboras, S. P., Besana-Ostman, G. M., Cabral, J., Camelbeeck, T., Caputo, R., Danciu, L., Domaç, H., Fonseca, J. F. de B. D., García-Mayordomo, J., Giardini, D., Glavatovic, B., Gulen, L., Ince, Y., … Wössner, J. (2013). European Database of Seismogenic Faults (EDSF). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.6092/INGV.IT-SHARE-EDSF

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530

Chiarabba, C., Jovane, L., & DiStefano, R. (2005). A new view of Italian seismicity using 20 years of instrumental recordings. Tectonophysics, 395(3–4), 251–268. https://doi.org/10.1016/j.tecto.2004.09.013

D’Agostino, N., Avallone, A., Cheloni, D., D’Anastasio, E., Mantenuto, S., & Selvaggi, G. (2008). Active tectonics of the Adriatic region from GPS and earthquake slip vectors. Journal of Geophysical Research: Solid Earth, 113(B12). https://doi.org/10.1029/2008jb005860

Di Luccio, F., Palano, M., Scognamiglio, L., Marchetti, A., Dasović, I., Mustać, M., Magnoni, F., Harris, P. A., Casarotti, E., Polonia, A., Gasperini, L., Dannowski, A., & Kopp, H. (2025). The Role of Salt Tectonics in the 2021 Central Adriatic Seismic Sequence. Earth and Space Science, 12(5). https://doi.org/10.1029/2025ea004216

Dreger, D. S., Tkalčić, H., & Johnston, M. (2000). Dilational Processes Accompanying Earthquakes in the Long Valley Caldera. Science, 288(5463), 122–125. https://doi.org/10.1126/science.288.5463.122

Duputel, Z., Rivera, L., Fukahata, Y., & Kanamori, H. (2012). Uncertainty estimations for seismic source inversions: Uncertainty estimations for source inversions. Geophysical Journal International, 190(2), 1243–1256. https://doi.org/10.1111/j.1365-246x.2012.05554.x

Ekström, G. (2006). Global Detection and Location of Seismic Sources by Using Surface Waves. Bulletin of the Seismological Society of America, 96(4A), 1201–1212. https://doi.org/10.1785/0120050175

Ekström, G., & Engdahl, E. R. (1989). Earthquake source parameters and stress distribution in the Adak Island region of the central Aleutian Islands, Alaska. Journal of Geophysical Research: Solid Earth, 94(B11), 15499–15519. https://doi.org/10.1029/jb094ib11p15499

Ekström, G., Stein, R. S., Eaton, J. P., & Eberhart‐Phillips, D. (1992). Seismicity and geometry of a 110‐km‐long blind thrust fault 1. The 1985 Kettleman Hills, California, earthquake. Journal of Geophysical Research: Solid Earth, 97(B4), 4843–4864. https://doi.org/10.1029/91jb02925

Foreman-Mackey, D. (2016). corner.py: Scatterplot matrices in Python. The Journal of Open Source Software, 1(2), 24. https://doi.org/10.21105/joss.00024

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. (2013). emcee: The MCMC Hammer. Publications of the Astronomical Society of the Pacific, 125(925), 306–312. https://doi.org/10.1086/670067

Govorčin, M., Herak, M., Matoš, B., Pribičević, B., & Vlahović, I. (2020). Constraints on Complex Faulting during the 1996 Ston–Slano (Croatia) Earthquake Inferred from the DInSAR, Seismological, and Geological Observations. Remote Sensing, 12(7), 1157. https://doi.org/10.3390/rs12071157

Halauwet, Y., Afnimar, Triyoso, W., Vackář, J., Daryono, D., Supendi, P., Daniarsyad, G., Simanjuntak, A. V. H., Pranata, B., Narwadan, H. A. A. M., & Hakim, M. L. (2024). A new automated procedure to obtain reliable moment tensor solutions of small to moderate earthquakes (3.0 ≤ M ≤ 5.5) in the Bayesian framework. Geophysical Journal International, 239(2), 1000–1020. https://doi.org/10.1093/gji/ggae309

Hallo, M., & Gallovič, F. (2016). Fast and cheap approximation of Green function uncertainty for waveform-based earthquake source inversions. Geophysical Journal International, 207(2), 1012–1029. https://doi.org/10.1093/gji/ggw320

Handy, M. R., M. Schmid, S., Bousquet, R., Kissling, E., & Bernoulli, D. (2010). Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth-Science Reviews, 102(3–4), 121–158. https://doi.org/10.1016/j.earscirev.2010.06.002

Hantken von Prudnik, M. (1882). Das Erdbeben von Agram im Jahre 1880.

Herak, D., & Herak, M. (2006). Veliki zagrebački potres 1880. Meridijani, 109, 24–33.

Herak, D., Herak, M., Prelogović, E., Markušić, S., & Markulin, Ž. (2005). Jabuka island (Central Adriatic Sea) earthquakes of 2003. Tectonophysics, 398(3–4), 167–180. https://doi.org/10.1016/j.tecto.2005.01.007

Herak, D., Herak, M., & Tomljenović, B. (2009). Seismicity and earthquake focal mechanisms in North-Western Croatia. Tectonophysics, 465(1–4), 212–220. https://doi.org/10.1016/j.tecto.2008.12.005

Herak, D., Herak, M., & Vrkić, I. (2023). The Earthquake of 13 April 1850 near Ston, Croatia: Macroseismic Analyses. Seismological Research Letters, 95(2A), 1043–1056. https://doi.org/10.1785/0220230299

Herak, M. (2024). Croatian catalogue and database of focal mechanism solutions, characteristic mechanisms, and stress field properties in the Dinarides and the surrounding regions. Geofizika, 41(2), 79–123. https://doi.org/10.15233/gfz.2024.41.5

Herak, M., & Herak, D. (2023). Properties of the Petrinja (Croatia) earthquake sequence of 2020–2021 – Results of seismological research for the first six months of activity. Tectonophysics, 858, 229885. https://doi.org/10.1016/j.tecto.2023.229885

Herak, M., & Herak, D. (2024). A Comparative Study of Building Damage in Ston, Croatia, Caused by the Earthquakes of 1850 and 1996. Seismological Research Letters, 95(5), 3070–3081. https://doi.org/10.1785/0220240248

Herak, M., Herak, D., & Markušić, S. (1996). Revision of the earthquake catalogue and seismicity of Croatia, 1908–1992. Terra Nova, 8(1), 86–94. https://doi.org/10.1111/j.1365-3121.1996.tb00728.x

Herak, M., Herak, D., & Orlić, N. (2021). Properties of the Zagreb 22 March 2020 earthquake sequence: analyses of the full year of aftershock recording. Geofizika, 38(2), 93–116. https://doi.org/10.15233/gfz.2021.38.6

Herak, M., Herak, D., & Živčić, M. (2021). Which one of the three latest large earthquakes in Zagreb was the strongest – the 1905, 1906 or the 2020 one? Geofizika, 38(2), 117–146. https://doi.org/10.15233/gfz.2021.38.5

Herrmann, R. B. (2013). Computer Programs in Seismology: An Evolving Tool for Instruction and Research. Seismological Research Letters, 84(6), 1081–1088. https://doi.org/10.1785/0220110096

Herrmann, R. B., Malagnini, L., & Munafo, I. (2011). Regional Moment Tensors of the 2009 L’Aquila Earthquake Sequence. Bulletin of the Seismological Society of America, 101(3), 975–993. https://doi.org/10.1785/0120100184

Hu, J., Phạm, T., & Tkalčić, H. (2024). A Composite Seismic Source Model for the First Major Event During the 2022 Hunga (Tonga) Volcanic Eruption. Geophysical Research Letters, 51(18). https://doi.org/10.1029/2024gl109442

Hu, J., Phạm, T.-S., & Tkalčić, H. (2023). Seismic moment tensor inversion with theory errors from 2-D Earth structure: implications for the 2009–2017 DPRK nuclear blasts. Geophysical Journal International, 235(3), 2035–2054. https://doi.org/10.1093/gji/ggad348

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/mcse.2007.55

Istituto Nazionale di Geofisica e Vulcanologia (INGV). (2005). Rete Sismica Nazionale (RSN). https://doi.org/10.13127/sd/x0fxnh7qfy.

Ivančić, I., Herak, D., Herak, M., Allegretti, I., Fiket, T., Kuk, K., Markušić, S., Prevolnik, S., Sović, I., Dasović, I., & Stipčević, J. (2018). Seismicity of Croatia in the period 2006-2015. Geofizika, 35(1), 69–98. https://doi.org/10.15233/gfz.2018.35.2

Jost, M. L., & Herrmann, R. B. (1989). A Student’s Guide to and Review of Moment Tensors. Seismological Research Letters, 60(2), 37–57. https://doi.org/10.1785/gssrl.60.2.37

Julian, B. R., Miller, A. D., & Foulger, G. R. (1998). Non‐double‐couple earthquakes 1. Theory. Reviews of Geophysics, 36(4), 525–549. https://doi.org/10.1029/98rg00716

Kagan, Y. Y. (1991). 3-D rotation of double-couple earthquake sources. Geophysical Journal International, 106(3), 709–716. https://doi.org/10.1111/j.1365-246x.1991.tb06343.x

Kastelic, V., Vannoli, P., Burrato, P., Fracassi, U., Tiberti, M. M., & Valensise, G. (2013). Seismogenic sources in the Adriatic Domain. Marine and Petroleum Geology, 42, 191–213. https://doi.org/10.1016/j.marpetgeo.2012.08.002

Knopoff, L., & Randall, M. J. (1970). The compensated linear-vector dipole: A possible mechanism for deep earthquakes. Journal of Geophysical Research, 75(26), 4957–4963. https://doi.org/10.1029/jb075i026p04957

Latorre, D., Di Stefano, R., Castello, B., Michele, M., & Chiaraluce, L. (2023). An updated view of the Italian seismicity from probabilistic location in 3D velocity models: The 1981–2018 Italian catalog of absolute earthquake locations (CLASS). Tectonophysics, 846, 229664. https://doi.org/10.1016/j.tecto.2022.229664

Le Breton, E., Handy, M. R., Molli, G., & Ustaszewski, K. (2017). Post‐20 Ma Motion of the Adriatic Plate: New Constraints From Surrounding Orogens and Implications for Crust‐Mantle Decoupling. Tectonics, 36(12), 3135–3154. https://doi.org/10.1002/2016tc004443

Markušić, S., Stanko, D., Penava, D., Ivančić, I., Bjelotomić Oršulić, O., Korbar, T., & Sarhosis, V. (2021). Destructive M6.2 Petrinja Earthquake (Croatia) in 2020—Preliminary Multidisciplinary Research. Remote Sensing, 13(6), 1095. https://doi.org/10.3390/rs13061095

MedNet Project Partner Institutions. (1990). Mediterranean Very Broadband Seismographic Network (MedNet). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/sd/fbbbtdtd6q

Minson, S. E., & Dreger, D. S. (2008). Stable inversions for complete moment tensors. Geophysical Journal International, 174(2), 585–592. https://doi.org/10.1111/j.1365-246x.2008.03797.x

Mustać, M., Hejrani, B., Tkalčić, H., Kim, S., Lee, S.-J., & Cho, C.-S. (2020). Large Isotropic Component in the Source Mechanism of the 2013 Democratic People’s Republic of Korea Nuclear Test Revealed via a Hierarchical Bayesian Inversion. Bulletin of the Seismological Society of America, 110(1), 166–177. https://doi.org/10.1785/0120190062

Mustać, M., & Tkalčić, H. (2016). Point source moment tensor inversion through a Bayesian hierarchical model. Geophysical Journal International, 204(1), 311–323. https://doi.org/10.1093/gji/ggv458

Mustać, M., & Tkalčić, H. (2017). On the Use of Data Noise as a Site‐Specific Weight Parameter in a Hierarchical Bayesian Moment Tensor Inversion: The Case Study of The Geysers and Long Valley Caldera Earthquakes. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120160379

Mustać, M., Tkalčić, H., & Burky, A. L. (2018). The Variability and Interpretation of Earthquake Source Mechanisms in The Geysers Geothermal Field From a Bayesian Standpoint Based on the Choice of a Noise Model. Journal of Geophysical Research: Solid Earth, 123(1), 513–532. https://doi.org/10.1002/2017jb014897

Orecchio, B., Presti, D., Scolaro, S., & Totaro, C. (2023). Seismic deformation in the Adriatic Sea region. Journal of Geodynamics, 155, 101956. https://doi.org/10.1016/j.jog.2022.101956

Palano, M. (2015). On the present-day crustal stress, strain-rate fields and mantle anisotropy pattern of Italy. Geophysical Journal International, 200(2), 969–985. https://doi.org/10.1093/gji/ggu451

Phạm, T. S., & Tkalčić, H. (2021). Toward Improving Point‐Source Moment‐Tensor Inference by Incorporating 1D Earth Model’s Uncertainty: Implications for the Long Valley Caldera Earthquakes. Journal of Geophysical Research: Solid Earth, 126(11). https://doi.org/10.1029/2021jb022477

Phạm, T. S., Tkalčić, H., Hu, J., & Kim, S. (2024). Towards a new standard for seismic moment tensor inversion containing 3-D earth structure uncertainty. Geophysical Journal International, 238(3), 1840–1853. https://doi.org/10.1093/gji/ggae256

Piccardi, L., Sani, F., Moratti, G., Cunningham, D., & Vittori, E. (2011). Present-day geodynamics of the circum-Adriatic region: An overview. Journal of Geodynamics, 51(2–3), 81–89. https://doi.org/10.1016/j.jog.2010.09.002

Pondrelli, S. (2002). European-Mediterranean Regional Centroid-Moment Tensors Catalog (RCMT). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/rcmt/euromed

Rösler, B., & Stein, S. (2022). Consistency of Non-Double-Couple Components of Seismic Moment Tensors with Earthquake Magnitude and Mechanism. Seismological Research Letters, 93(3), 1510–1523. https://doi.org/10.1785/0220210188

Rovida, A., Locati, M., Camassi, R., Lolli, B., & Gasperini, P. (2020). The Italian earthquake catalogue CPTI15. Bulletin of Earthquake Engineering, 18(7), 2953–2984. https://doi.org/10.1007/s10518-020-00818-y

Rovida, A., Locati, M., Camassi, R., Lolli, B., Gasperini, P., & Antonucci, A. (2022). Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://emidius.mi.ingv.it/CPTI15-DBMI15/

Saoulis, A. A., Piras, D., Spurio Mancini, A., Joachimi, B., & Ferreira, A. M. G. (2025). Full-waveform earthquake source inversion using simulation-based inference. Geophysical Journal International, 241(3), 1741–1762. https://doi.org/10.1093/gji/ggaf112

Šavor Novak, M., Uroš, M., Atalić, J., Herak, M., Demšić, M., Baniček, M., Lazarević, D., Bijelić, N., Crnogorac, M., & Todorić, M. (2020). Zagreb earthquake of 22 March 2020 – preliminary report on seismologic aspects and damage to buildings. Journal of the Croatian Association of Civil Engineers, 72(10), 869–893. https://doi.org/10.14256/jce.2966.2020

Schmid, S. M., Fügenschuh, B., Kounov, A., Maţenco, L., Nievergelt, P., Oberhänsli, R., Pleuger, J., Schefer, S., Schuster, R., Tomljenović, B., Ustaszewski, K., & van Hinsbergen, D. J. J. (2020). Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Research, 78, 308–374. https://doi.org/10.1016/j.gr.2019.07.005

Scognamiglio, L., Tinti, E., & Michelini, A. (2009). Real-Time Determination of Seismic Moment Tensor for the Italian Region. Bulletin of the Seismological Society of America, 99(4), 2223–2242. https://doi.org/10.1785/0120080104

Sector for Seismology, Institute of Hydrometeorology and Seismology of Montenegro. (1982). Montenegrin Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/ME

Shang, X., & Tkalčić, H. (2020). Point‐Source Inversion of Small and Moderate Earthquakes From P‐wave Polarities and P/S Amplitude Ratios Within a Hierarchical Bayesian Framework: Implications for the Geysers Earthquakes. Journal of Geophysical Research: Solid Earth, 125(2). https://doi.org/10.1029/2019jb018492

Sipkin, S. A. (1986). Interpretation of non‐double‐couple earthquake mechanisms derived from moment tensor inversion. Journal of Geophysical Research: Solid Earth, 91(B1), 531–547. https://doi.org/10.1029/jb091ib01p00531

Slovenian Environment Agency. (1990). Seismic Network of the Republic of Slovenia. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/SL

Stipčević, J., Herak, M., Molinari, I., Dasović, I., Tkalčić, H., & Gosar, A. (2020). Crustal Thickness Beneath the Dinarides and Surrounding Areas From Receiver Functions. Tectonics, 39(3). https://doi.org/10.1029/2019tc005872

Tape, W., & Tape, C. (2012). A geometric setting for moment tensors: A geometric setting for moment tensors. Geophysical Journal International, 190(1), 476–498. https://doi.org/10.1111/j.1365-246x.2012.05491.x

Tkalcic, H., Dreger, D. S., Foulger, G. R., & Julian, B. R. (2009). The Puzzle of the 1996 Bardarbunga, Iceland, Earthquake: No Volumetric Component in the Source Mechanism. Bulletin of the Seismological Society of America, 99(5), 3077–3085. https://doi.org/10.1785/0120080361

Tomljenović, B., Csontos, L., Márton, E., & Márton, P. (2008). Tectonic evolution of the northwestern Internal Dinarides as constrained by structures and rotation of Medvednica Mountains, North Croatia. Geological Society, London, Special Publications, 298(1), 145–167. https://doi.org/10.1144/sp298.8

Torbar, J. (1882). Izvješće o zagrebačkom potresu 9. studenoga 1880. Djela Jugoslavenske akademije znanosti i umjetnosti, knjiga I.

University of Bari “Aldo Moro.” (2013). OTRIONS. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/OT

University of Zagreb. (2001). Croatian Seismograph Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/CR

van Hinsbergen, D. J. J., Torsvik, T. H., Schmid, S. M., Maţenco, L. C., Maffione, M., Vissers, R. L. M., Gürer, D., & Spakman, W. (2020). Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research, 81, 79–229. https://doi.org/10.1016/j.gr.2019.07.009

Vasyura-Bathke, H., Dettmer, J., Dutta, R., Mai, P. M., & Jónsson, S. (2021). Accounting for theory errors with empirical Bayesian noise models in nonlinear centroid moment tensor estimation. Geophysical Journal International, 225(2), 1412–1431. https://doi.org/10.1093/gji/ggab034

Vavryčuk, V. (2014). Moment tensor decompositions revisited. Journal of Seismology, 19(1), 231–252. https://doi.org/10.1007/s10950-014-9463-y

Z.A.M.G. Zentralanstalt für Meterologie und Geodynamik. (1987). Austrian Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/OE

Zhao, L.-S., & Helmberger, D. V. (1994). Source Estimation from Broadband Regional Seismograms. Bulletin of the Seismological Society of America, 84(1), 91–104. https://doi.org/10.1785/bssa0840010091

Zhu, L., & Helmberger, D. V. (1996). Advancement in source estimation techniques using broadband regional seismograms. Bulletin of the Seismological Society of America, 86(5), 1634–1641. https://doi.org/10.1785/bssa0860051634

Downloads

Published

2025-11-25

How to Cite

Hu, J., Tkalčić H., Phạm, T.-S., Herak, M., Dasović, I., & Mustać Brčić, M. (2025). Bayesian Reassessment of Seismic Moment Tensors and Their Uncertainties in the Adriatic Sea Region. Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.1721

Issue

Section

Articles