Using ruptures from an earthquake cycle simulator to test geodetic early warning system performance

Authors

DOI:

https://doi.org/10.26443/seismica.v4i2.1769

Keywords:

GNSS, Earthquake simulation, earthquake early warning

Abstract

New Zealand's vulnerability to seismic hazards highlights the need for systems capable of providing earthquake early warning (EEW) alerts or rapid notice of strong shaking. Large offshore earthquakes along the subduction zone east of the North Island could also trigger catastrophic tsunamis, inundating coastal communities in under an hour. Although New Zealand operates a robust seismic and geodetic network capable of monitoring moderate-to-large earthquakes, the limited observational record of large earthquakes poses challenges for EEW design and response. This study evaluates magnitude estimation from G-FAST, an early warning algorithm that uses Global Navigation Satellite System (GNSS) data to characterize earthquake sources. We analyze synthetic rupture scenarios along the Hikurangi subduction margin generated by the earthquake simulator RSQSim. For each rupture, GNSS displacements are generated at each site and compared with Peak Ground Displacement (PGD) scaling relationships to test whether they replicate real earthquakes. While we also assess PGD values from rupture scenarios produced with simpler semi-stochastic kinematic modeling, those from RSQSim yield ground motions more consistent with expected values. Given these results, synthetic displacement data from RSQSim ruptures were ingested into G-FAST to evaluate performance for rapid earthquake characterization, finding that PGD-based estimates capture moment magnitude in 90% of cases. This framework demonstrates the utility of synthetic catalogs for testing geodetic EEW performance in characterizing large subduction earthquakes in the North Island region and provides a path- way toward tsunami early warning procedures.

References

Aguirre, P., Vásquez, J., de la Llera, J. C., González, J., & González, G. (2018). Earthquake damage assessment for deterministic scenarios in Iquique, Chile. Natural Hazards, 92(3), 1433–1461. https://doi.org/10.1007/s11069-018-3258-3

Allen, R. M., & Melgar, D. (2019). Earthquake Early Warning: Advances, Scientific Challenges, and Societal Needs. Annual Review of Earth and Planetary Sciences, 47(1), 361–388. https://doi.org/10.1146/annurev-earth-053018-060457

Ammon, C. J., Ji, C., Thio, H.-K., Robinson, D., Ni, S., Hjorleifsdottir, V., Kanamori, H., Lay, T., Das, S., Helmberger, D., Ichinose, G., Polet, J., & Wald, D. (2005). Rupture Process of the 2004 Sumatra-Andaman Earthquake. Science, 308(5725), 1133–1139. https://doi.org/10.1126/science.1112260

Andrews, J., Behr, Y., Böse, M., Massin, F., Kaiser, A., & Fry, B. (2023). Rapid Earthquake Rupture Characterization for New Zealand Using the FinDer Algorithm. Bulletin of the Seismological Society of America, 114(2), 775–793. https://doi.org/10.1785/0120230213

Barbot, S. (2023). Motorcycle: A spectral boundary-integral method for seismic cycles on multiple faults. Journal of Open Source Software, 8(91), 5097. https://doi.org/10.21105/joss.05097

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530

Blaser, L., Kruger, F., Ohrnberger, M., & Scherbaum, F. (2010). Scaling Relations of Earthquake Source Parameter Estimates with Special Focus on Subduction Environment. Bulletin of the Seismological Society of America, 100(6), 2914–2926. https://doi.org/10.1785/0120100111

Clark, K., Howarth, J., Litchfield, N., Cochran, U., Turnbull, J., Dowling, L., Howell, A., Berryman, K., & Wolfe, F. (2019). Geological evidence for past large earthquakes and tsunamis along the Hikurangi subduction margin, New Zealand. Marine Geology, 412, 139–172. https://doi.org/10.1016/j.margeo.2019.03.004

Crowell, B. W. (2024). Chapter 6—Earthquake and tsunami early warning with GNSS data. In GNSS Monitoring of the Terrestrial Environment (pp. 111–127). Elsevier. https://doi.org/10.1016/b978-0-323-95507-2.00004-9

Crowell, B. W., Bock, Y., & Melgar, D. (2012). Real‐time inversion of GPS data for finite fault modeling and rapid hazard assessment. Geophysical Research Letters, 39(9). https://doi.org/10.1029/2012gl051318

Crowell, B. W., Melgar, D., Bock, Y., Haase, J. S., & Geng, J. (2013). Earthquake magnitude scaling using seismogeodetic data. Geophysical Research Letters, 40(23), 6089–6094. https://doi.org/10.1002/2013gl058391

Crowell, B. W., Schmidt, D. A., Bodin, P., Vidale, J. E., Baker, B., Barrientos, S., & Geng, J. (2018). G‐FAST Earthquake Early Warning Potential for Great Earthquakes in Chile. Seismological Research Letters, 89(2A), 542–556. https://doi.org/10.1785/0220170180

Crowell, B. W., Schmidt, D. A., Bodin, P., Vidale, J. E., Gomberg, J., Renate Hartog, J., Kress, V. C., Melbourne, T. I., Santillan, M., Minson, S. E., & Jamison, D. G. (2016). Demonstration of the Cascadia G‐FAST Geodetic Earthquake Early Warning System for the Nisqually, Washington, Earthquake. Seismological Research Letters, 87(4), 930–943. https://doi.org/10.1785/0220150255

Delogkos, E., Howell, A., Seebeck, H., Shaw, B. E., Nicol, A., Mika Liao, Y., & Walsh, J. J. (2023). Impact of Variable Fault Geometries and Slip Rates on Earthquake Catalogs From Physics‐Based Simulations of a Normal Fault. Journal of Geophysical Research: Solid Earth, 128(11). https://doi.org/10.1029/2023jb026746

Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research: Solid Earth, 84(B5), 2161–2168. https://doi.org/10.1029/jb084ib05p02161

Duputel, Z., & Rivera, L. (2017). Long-period analysis of the 2016 Kaikoura earthquake. Physics of the Earth and Planetary Interiors, 265, 62–66. https://doi.org/10.1016/j.pepi.2017.02.004

Gerstenberger, M. C., Bora, S., Bradley, B. A., DiCaprio, C., Kaiser, A., Manea, E. F., Nicol, A., Rollins, C., Stirling, M. W., Thingbaijam, K. K. S., Van Dissen, R. J., Abbott, E. R., Atkinson, G. M., Chamberlain, C., Christophersen, A., Clark, K., Coffey, G. L., de la Torre, C. A., Ellis, S. M., … Wotherspoon, L. M. (2023). The 2022 Aotearoa New Zealand National Seismic Hazard Model: Process, Overview, and Results. Bulletin of the Seismological Society of America, 114(1), 7–36. https://doi.org/10.1785/0120230182

Given, D. D., Allen, R. M., Baltay, A. S., Bodin, P., Cochran, E. S., Creager, K., de Groot, R. M., Gee, L. S., Hauksson, E., Heaton, T. H., Hellweg, M., Murray, J. R., Thomas, V. I., Toomey, D., & Yelin, T. S. (2018). Revised technical implementation plan for the ShakeAlert system—An earthquake early warning system for the West Coast of the United States. In Open-File Report. US Geological Survey. https://doi.org/10.3133/ofr20181155

GNS Science. (2019). GeoNet Aotearoa New Zealand stations metadata repository. GNS Science, GeoNet. https://doi.org/10.21420/0VY2-C144

Goldberg, D. E., Melgar, D., Hayes, G. P., Crowell, B. W., & Sahakian, V. J. (2021). A Ground-Motion Model for GNSS Peak Ground Displacement. Bulletin of the Seismological Society of America, 111(5), 2393–2407. https://doi.org/10.1785/0120210042

Graves, R., & Pitarka, A. (2014). Refinements to the Graves and Pitarka (2010) Broadband Ground-Motion Simulation Method. Seismological Research Letters, 86(1), 75–80. https://doi.org/10.1785/0220140101

Graves, R. W., & Pitarka, A. (2010). Broadband Ground-Motion Simulation Using a Hybrid Approach. Bulletin of the Seismological Society of America, 100(5A), 2095–2123. https://doi.org/10.1785/0120100057

Hamling, I. J. (2019). A review of the 2016 Kaikōura earthquake: insights from the first 3 years. Journal of the Royal Society of New Zealand, 50(2), 226–244. https://doi.org/10.1080/03036758.2019.1701048

Hayes, G. (2018). Slab2 - A Comprehensive Subduction Zone Geometry Model. U.S. Geological Survey. https://doi.org/10.5066/F7PV6JNV

Hok, S., Fukuyama, E., & Hashimoto, C. (2011). Dynamic rupture scenarios of anticipated Nankai-Tonankai earthquakes, southwest Japan. Journal of Geophysical Research, 116(B12). https://doi.org/10.1029/2011jb008492

Howarth, J. D., Barth, N. C., Fitzsimons, S. J., Richards-Dinger, K., Clark, K. J., Biasi, G. P., Cochran, U. A., Langridge, R. M., Berryman, K. R., & Sutherland, R. (2021). Spatiotemporal clustering of great earthquakes on a transform fault controlled by geometry. Nature Geoscience, 14(5), 314–320. https://doi.org/10.1038/s41561-021-00721-4

Hughes, L., Lane, E. M., Power, W., Savage, M. K., Arnold, R., Howell, A., Liao, Y.-W. M., Williams, C., Shaw, B., Fry, B., & Nicol, A. (2024). Effects of subduction interface locking distributions on tsunami hazard: a case study on the Hikurangi/Tonga-Kermadec subduction zones. Geophysical Journal International, 240(2), 1147–1167. https://doi.org/10.1093/gji/ggae441

Hughes, L., Power, W., Lane, E. M., Savage, M. K., Arnold, R., Howell, A., Shaw, B., Fry, B., & Nicol, A. (2023). A Novel Method to Determine Probabilistic Tsunami Hazard Using a Physics‐Based Synthetic Earthquake Catalog: A New Zealand Case Study. Journal of Geophysical Research: Solid Earth, 128(12). https://doi.org/10.1029/2023jb027207

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/mcse.2007.55

Lay, T. (2018). A review of the rupture characteristics of the 2011 Tohoku-oki Mw 9.1 earthquake. Tectonophysics, 733, 4–36. https://doi.org/10.1016/j.tecto.2017.09.022

Lay, T., Kanamori, H., Ammon, C. J., Nettles, M., Ward, S. N., Aster, R. C., Beck, S. L., Bilek, S. L., Brudzinski, M. R., Butler, R., DeShon, H. R., Ekström, G., Satake, K., & Sipkin, S. (2005). The Great Sumatra-Andaman Earthquake of 26 December 2004. Science, 308(5725), 1127–1133. https://doi.org/10.1126/science.1112250

LeVeque, R. J., Waagan, K., González, F. I., Rim, D., & Lin, G. (2016). Generating Random Earthquake Events for Probabilistic Tsunami Hazard Assessment. In Global Tsunami Science: Past and Future, Volume I (pp. 3671–3692). Springer International Publishing. https://doi.org/10.1007/978-3-319-55480-8_2

Mai, P. M., & Beroza, G. C. (2002). A spatial random field model to characterize complexity in earthquake slip. Journal of Geophysical Research: Solid Earth, 107(B11). https://doi.org/10.1029/2001jb000588

Melgar, D., Crowell, B. W., Geng, J., Allen, R. M., Bock, Y., Riquelme, S., Hill, E. M., Protti, M., & Ganas, A. (2015). Earthquake magnitude calculation without saturation from the scaling of peak ground displacement. Geophysical Research Letters, 42(13), 5197–5205. https://doi.org/10.1002/2015gl064278

Melgar, D., Crowell, B. W., Melbourne, T. I., Szeliga, W., Santillan, M., & Scrivner, C. (2020). Noise Characteristics of Operational Real‐Time High‐Rate GNSS Positions in a Large Aperture Network. Journal of Geophysical Research: Solid Earth, 125(7). https://doi.org/10.1029/2019jb019197

Melgar, D., & Hayes, G. P. (2017). Systematic Observations of the Slip Pulse Properties of Large Earthquake Ruptures. Geophysical Research Letters, 44(19), 9691–9698. https://doi.org/10.1002/2017gl074916

Melgar, D., LeVeque, R. J., Dreger, D. S., & Allen, R. M. (2016). Kinematic rupture scenarios and synthetic displacement data: An example application to the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 121(9), 6658–6674. https://doi.org/10.1002/2016jb013314

Mena, B., Mai, P. M., Olsen, K. B., Purvance, M. D., & Brune, J. N. (2010). Hybrid Broadband Ground-Motion Simulation Using Scattering Green’s Functions: Application to Large-Magnitude Events. Bulletin of the Seismological Society of America, 100(5A), 2143–2162. https://doi.org/10.1785/0120080318

Mori, N., Takahashi, T., Yasuda, T., & Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophysical Research Letters, 38(7). https://doi.org/10.1029/2011gl049210

Murray, J. R., Crowell, B. W., Murray, M. H., Ulberg, C. W., McGuire, J. J., Aranha, M. A., & Hagerty, M. T. (2023). Incorporation of Real-Time Earthquake Magnitudes Estimated via Peak Ground Displacement Scaling in the ShakeAlert Earthquake Early Warning System. Bulletin of the Seismological Society of America, 113(3), 1286–1310. https://doi.org/10.1785/0120220181

Nye, T., Sahakian, V., & Melgar, D. (2024). Modeling ground motions and crustal deformation from tsunami earthquakes: Rupture parameter constraints from the 2010 Mentawai event. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1152

Orchiston, C., Mitchell, J., Wilson, T., Langridge, R., Davies, T., Bradley, B., Johnston, D., Davies, A., Becker, J., & McKay, A. (2018). Project AF8: developing a coordinated, multi-agency response plan for a future great Alpine Fault earthquake. New Zealand Journal of Geology and Geophysics, 61(3), 389–402. https://doi.org/10.1080/00288306.2018.1455716

Ozawa, S., Ida, A., Hoshino, T., & Ando, R. (2022). Large-scale earthquake sequence simulations on 3-D non-planar faults using the boundary element method accelerated by lattice H-matrices. Geophysical Journal International, 232(3), 1471–1481. https://doi.org/10.1093/gji/ggac386

Pasyanos, M. E., Masters, T. G., Laske, G., & Ma, Z. (2014). LITHO1.0: An updated crust and lithospheric model of the Earth. Journal of Geophysical Research: Solid Earth, 119(3), 2153–2173. https://doi.org/10.1002/2013JB010626

Rafiei, M., Khodaverdian, A., & Rahimian, M. (2022). A Probabilistic Physics-Based Seismic Hazard Model for the Alborz Region, Iran. Bulletin of the Seismological Society of America, 112(4), 2141–2155. https://doi.org/10.1785/0120210238

Richards-Dinger, K., & Dieterich, J. H. (2012). RSQSim Earthquake Simulator. Seismological Research Letters, 83(6), 983–990. https://doi.org/10.1785/0220120105

Ruhl, C. J., Melgar, D., Grapenthin, R., & Allen, R. M. (2017). The value of real‐time GNSS to earthquake early warning. Geophysical Research Letters, 44(16), 8311–8319. https://doi.org/10.1002/2017gl074502

Shaw, B. E., Fry, B., Nicol, A., Howell, A., & Gerstenberger, M. (2022). An Earthquake Simulator for New Zealand. Bulletin of the Seismological Society of America, 112(2), 763–778. https://doi.org/10.1785/0120210087

Shaw, B. E., Milner, K. R., Field, E. H., Richards-Dinger, K., Gilchrist, J. J., Dieterich, J. H., & Jordan, T. H. (2018). A physics-based earthquake simulator replicates seismic hazard statistics across California. Science Advances, 4(8). https://doi.org/10.1126/sciadv.aau0688

Small, D. T., & Melgar, D. (2023). Can Stochastic Slip Rupture Modeling Produce Realistic M9+ Events? Journal of Geophysical Research: Solid Earth, 128(3). https://doi.org/10.1029/2022jb025716

Solares-Colón, M. M., Melgar, D., Howell, A., Crowell, B., D’Anastasio, E., Caballero, E., & Fry, B. (2025). Using ruptures from earthquake cycle simulators to test geodetic early warning systems performance (Supplementary Data). Zenodo. https://doi.org/10.5281/ZENODO.15522298

Stirling, M., Fitzgerald, M., Shaw, B., & Ross, C. (2023). New Magnitude–Area Scaling Relations for the New Zealand National Seismic Hazard Model 2022. Bulletin of the Seismological Society of America, 114(1), 137–149. https://doi.org/10.1785/0120230114

Thompson, E. M., & Baltay, A. S. (2018). The Case for Mean Rupture Distance in Ground‐Motion Estimation. Bulletin of the Seismological Society of America, 108(5A), 2462–2477. https://doi.org/10.1785/0120170306

Tian, D., Uieda, L., Leong, W. J., Fröhlich, Y., Schlitzer, W., Grund, M., Jones, M., Toney, L., Yao, J., Magen, Y., Tong, J.-H., Materna, K., Belem, A., Newton, T., Anant, A., Ziebarth, M., Quinn, J., & Wessel, P. (2024). PyGMT: A Python interface for the Generic Mapping Tools. Zenodo. https://doi.org/10.5281/ZENODO.11062720

Uphoff, C., May, D. A., & Gabriel, A.-A. (2022). A discontinuous Galerkin method for sequences of earthquakes and aseismic slip on multiple faults using unstructured curvilinear grids. Geophysical Journal International, 233(1), 586–626. https://doi.org/10.1093/gji/ggac467

Van Dissen, R. J., Johnson, K. M., Seebeck, H., Wallace, L. M., Rollins, C., Maurer, J., Gerstenberger, M. C., Williams, C. A., Hamling, I. J., Howell, A., & DiCaprio, C. J. (2023). Upper Plate and Subduction Interface Deformation Models in the 2022 Revision of the Aotearoa New Zealand National Seismic Hazard Model. Bulletin of the Seismological Society of America, 114(1), 37–56. https://doi.org/10.1785/0120230118

Vargas, G., Farías, M., Carretier, S., Tassara, A., Baize, S., & Melnick, D. (2011). Coastal uplift and tsunami effects associated with the 2010 Mw8.8 Maule earthquake in central Chile. Andean Geology, 38(1), 219–238. https://doi.org/10.5027/andgeov38n1-a12

Wallace, L. M. (2020). Slow Slip Events in New Zealand. Annual Review of Earth and Planetary Sciences, 48(1), 175–203. https://doi.org/10.1146/annurev-earth-071719-055104

Williams, C. A., Eberhart-Phillips, D., Bannister, S., Barker, D. H. N., Henrys, S., Reyners, M., & Sutherland, R. (2013). Revised Interface Geometry for the Hikurangi Subduction Zone, New Zealand. Seismological Research Letters, 84(6), 1066–1073. https://doi.org/10.1785/0220130035

Williamson, A. L., Melgar, D., Crowell, B. W., Arcas, D., Melbourne, T. I., Wei, Y., & Kwong, K. (2020). Toward Near‐Field Tsunami Forecasting Along the Cascadia Subduction Zone Using Rapid GNSS Source Models. Journal of Geophysical Research: Solid Earth, 125(8). https://doi.org/10.1029/2020jb019636

Yue, H., Lay, T., Rivera, L., An, C., Vigny, C., Tong, X., & Báez Soto, J. C. (2014). Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high‐rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations. Journal of Geophysical Research: Solid Earth, 119(10), 7786–7804. https://doi.org/10.1002/2014jb011340

Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media: A note on the dynamic and static displacements from a point source. Geophysical Journal International, 148(3), 619–627. https://doi.org/10.1046/j.1365-246x.2002.01610.x

Zielke, O., & Mai, P. M. (2023). MCQsim: A Multicycle Earthquake Simulator. Bulletin of the Seismological Society of America, 113(3), 889–908. https://doi.org/10.1785/0120220248

Downloads

Published

2025-12-31

How to Cite

Solares Colon, M. M., Melgar, D., Howell, A., Crowell, B., D’Anastasio, E., Caballero, E., & Fry, B. (2025). Using ruptures from an earthquake cycle simulator to test geodetic early warning system performance. Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.1769

Issue

Section

Articles