Supershear source model of the 2025 M7.8 Myanmar earthquake and paleoseismology of the Sagaing Fault: regions of significant overlap with past earthquakes
DOI:
https://doi.org/10.26443/seismica.v4i2.1771Abstract
The 2025 Mw 7.8 earthquake on the central Sagaing Fault is one of the most destructive seismic events in Myanmar's recorded history, producing near-fault shaking exceeding Modified Mercalli Intensity X and impacting tens of millions of people across Southeast Asia. We present a detailed kinematic rupture model of the event based on joint inversion of regional strong motion waveforms and Sentinel-1 SAR pixel offsets. The rupture extended over ~450 km with an average slip of 3--5 m, predominantly within the upper 10 km of the crust. Inversions favor a maximum rupture speed of ~4.8 km/s, consistent with supershear propagation inferred from near-field waveform observations. We also report on paleoseismic evidence from a key site at the epicenter of the 2025 earthquake near Mandalay, which reveals five surface-rupturing earthquakes over the past millennium, with similar average displacement. Our results indicate a pattern of overlapping large ruptures along the central fault, with implications for rupture segmentation, recurrence, and seismic hazard. Given the exceptional exposure to earthquakes and high strain rates, our findings underscore the need for urgent attention to earthquake preparedness and infrastructure resilience in central Myanmar.
References
Andrews, D. J. (2010). Ground motion hazard from supershear rupture. Tectonophysics, 493(3–4), 216–221. https://doi.org/10.1016/j.tecto.2010.02.003 DOI: https://doi.org/10.1016/j.tecto.2010.02.003
Avouac, J., & Peltzer, G. (1993). Active tectonics in southern Xinjiang, China: Analysis of terrace riser and normal fault scarp degradation along the Hotan‐Qira Fault System. Journal of Geophysical Research: Solid Earth, 98(B12), 21773–21807. https://doi.org/10.1029/93jb02172 DOI: https://doi.org/10.1029/93JB02172
Avouac, J.-P., & Leprince, S. (2015). Geodetic Imaging Using Optical Systems. In Treatise on Geophysics (pp. 387–424). Elsevier. https://doi.org/10.1016/b978-0-444-53802-4.00067-1 DOI: https://doi.org/10.1016/B978-0-444-53802-4.00067-1
Bao, H., Ampuero, J.-P., Meng, L., Fielding, E. J., Liang, C., Milliner, C. W. D., Feng, T., & Huang, H. (2019). Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake. Nature Geoscience, 12(3), 200–205. https://doi.org/10.1038/s41561-018-0297-z DOI: https://doi.org/10.1038/s41561-018-0297-z
Bato, M. G., Lundgren, P., Pinel, V., Solidum Jr., R., Daag, A., & Caahulogan, M. (2021). The 2020 eruption and large lateral dike emplacement at Taal volcano, Philippines: Insights from satellite radar data. Geophysical Research Letters, 48(7). https://doi.org/10.1029/2021GL092803 DOI: https://doi.org/10.1029/2021GL092803
Blaser, L., Kruger, F., Ohrnberger, M., & Scherbaum, F. (2010). Scaling Relations of Earthquake Source Parameter Estimates with Special Focus on Subduction Environment. Bulletin of the Seismological Society of America, 100(6), 2914–2926. https://doi.org/10.1785/0120100111 DOI: https://doi.org/10.1785/0120100111
Bondár, I., Myers, S. C., Engdahl, E. R., & Bergman, E. A. (2004). Epicentre accuracy based on seismic network criteria. Geophysical Journal International, 156(3), 483–496. https://doi.org/10.1111/j.1365-246x.2004.02070.x DOI: https://doi.org/10.1111/j.1365-246X.2004.02070.x
Casu, F., Manconi, A., Pepe, A., & Lanari, R. (2011). Deformation Time-Series Generation in Areas Characterized by Large Displacement Dynamics: The SAR Amplitude Pixel-Offset SBAS Technique. IEEE Transactions on Geoscience and Remote Sensing, 49(7), 2752–2763. https://doi.org/10.1109/tgrs.2010.2104325 DOI: https://doi.org/10.1109/TGRS.2010.2104325
Curray, J. R. (2005). Tectonics and history of the Andaman Sea region. Journal of Asian Earth Sciences, 25(1), 187–232. https://doi.org/10.1016/j.jseaes.2004.09.001 DOI: https://doi.org/10.1016/j.jseaes.2004.09.001
Deng, Q., & Zhang, P. (2000). Colluvial wedges associated with pre-historical reverse faulting paleoearthquakes. Chinese Science Bulletin, 45(17), 1598–1604. https://doi.org/10.1007/bf02886221 DOI: https://doi.org/10.1007/BF02886221
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026 DOI: https://doi.org/10.1016/j.rse.2011.11.026
Dunham, E. M., & Bhat, H. S. (2008). Attenuation of radiated ground motion and stresses from three‐dimensional supershear ruptures. Journal of Geophysical Research: Solid Earth, 113(B8). https://doi.org/10.1029/2007jb005182 DOI: https://doi.org/10.1029/2007JB005182
Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7 DOI: https://doi.org/10.1016/0031-9201(81)90046-7
Earle, P. S., Wald, D. J., Jaiswal, K. S., Allen, T. I., Hearne, M. G., Marano, K. D., Hotovec, A. J., & Fee, J. (2009). Prompt Assessment of Global Earthquakes for Response (PAGER): A System for Rapidly Determining the Impact of Earthquakes Worldwide [Open-File Report]. US Geological Survey. https://doi.org/10.3133/ofr20091131 DOI: https://doi.org/10.3133/ofr20091131
Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002 DOI: https://doi.org/10.1016/j.pepi.2012.04.002
Gahalaut, V. K., & Gahalaut, K. (2007). Burma plate motion. Journal of Geophysical Research: Solid Earth, 112(B10). https://doi.org/10.1029/2007jb004928 DOI: https://doi.org/10.1029/2007JB004928
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., & Nilsson, J. (2018). Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. The Cryosphere, 12(2), 521–547. https://doi.org/10.5194/tc-12-521-2018 DOI: https://doi.org/10.5194/tc-12-521-2018
GEOFON Data Centre. (1993). GEOFON Seismic Network [Data set]. GFZ Data Services.
Guy, J. (1990). Ceramic Traditions of SE Asia (p. 80). Oxford University Press.
Hlaing, R., Gunawan, E., Widiyantoro, S., Meilano, I., & Saepuloh, A. (2019). Assessment of the Maximum Magnitude of Strike-Slip Faults in Myanmar. Geotechnical and Geological Engineering, 37(6), 5113–5122. https://doi.org/10.1007/s10706-019-00965-3 DOI: https://doi.org/10.1007/s10706-019-00965-3
Hurukawa, N., & Maung, P. M. (2011). Two seismic gaps on the Sagaing Fault, Myanmar, derived from relocation of historical earthquakes since 1918. Geophysical Research Letters, 38(1). https://doi.org/10.1029/2010gl046099 DOI: https://doi.org/10.1029/2010GL046099
Inoue, N., Yamaguchi, R., Yagi, Y., Okuwaki, R., Enescu, B., & Tadapansawut, T. (2025). A multiple asymmetric bilateral rupture sequence derived from the peculiar tele-seismic P-waves of the 2025 Mandalay, Myanmar earthquake. 4(1). https://doi.org/https://doi.org/10.26443/seismica.v4i1.1691 DOI: https://doi.org/10.26443/seismica.v4i1.1691
Kearse, J., & Kaneko, Y. (2025). Curved Fault Slip Captured by CCTV Video During the 2025 M w 7.7 Myanmar Earthquake. The Seismic Record, 5(3). https://doi.org/https://doi.org/10.1785/0320250024 DOI: https://doi.org/10.31223/X5TF0B
Kennett, B. L. N., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429–465. https://doi.org/10.1111/j.1365-246x.1991.tb06724.x DOI: https://doi.org/10.1111/j.1365-246X.1991.tb06724.x
Klinger, Y., Sieh, K., Altunel, E., Akoglu, A., Barka, A., Dawson, T., Gonzalez, T., Meltzner, A., & Rockwell, T. (2003). Paleoseismic Evidence of Characteristic Slip on the Western Segment of the North Anatolian Fault, Turkey. Bulletin of the Seismological Society of America, 93(6), 2317–2332. https://doi.org/10.1785/0120010270 DOI: https://doi.org/10.1785/0120010270
Lai, S.-T., Oo, K. M., Htwe, Y. M. M., Yi, T., Than, H. H., Than, O., Min, Z., Oo, T. M., Maung, P. M., Bindi, D., Cotton, F., Evans, P. L., Heinloo, A., Hillmann, L., Saul, J., Sens-Schoenfelder, C., Strollo, A., Tilmann, F., Weatherill, G., … Milkereit, C. (2025). Capacity Building Enables Unique Near-Fault Observations of the destructive 2025 Mw 7.7 Myanmar Earthquake. Copernicus GmbH. https://doi.org/10.5194/essd-2025-216 DOI: https://doi.org/10.5194/essd-2025-216
Le Dain, A. Y., Tapponnier, P., & Molnar, P. (1984). Active faulting and tectonics of Burma and surrounding regions. Journal of Geophysical Research: Solid Earth, 89(B1), 453–472. https://doi.org/10.1029/jb089ib01p00453 DOI: https://doi.org/10.1029/JB089iB01p00453
Lebakula, V., Epting, J., Moehl, J., Stipek, C., Adams, D., Reith, A., Kaufman, J., Gonzales, J., Reynolds, B., Basford, S., Martin, A., Buck, W., Faxon, A., Cunningham, A., Roy, A., Barbose, Z., Massaro, J., Walters, S., Woody, C., … Urban, M. (2024). LandScan Silver Edition. Oak Ridge National Laboratory. https://doi.org/10.48690/1531770
Lei, Y., Gardner, A., & Agram, P. (2021). Autonomous Repeat Image Feature Tracking (autoRIFT) and Its Application for Tracking Ice Displacement. Remote Sensing, 13(4), 749. https://doi.org/10.3390/rs13040749 DOI: https://doi.org/10.3390/rs13040749
Lindsey, E. O., Wang, Y., Aung, L. T., Chong, J.-H., Qiu, Q., Mallick, R., Feng, L., Aung, P. S., Tin, T. Z. H., Min, S. M., Bradley, K., Than, O., Oo, K. M., Thant, M., Masson, F., Bürgmann, R., & Hill, E. M. (2023). Active subduction and strain partitioning in western Myanmar revealed by a dense survey GNSS network. Earth and Planetary Science Letters, 622, 118384. https://doi.org/10.1016/j.epsl.2023.118384 DOI: https://doi.org/10.1016/j.epsl.2023.118384
Mallick, R., Lindsey, E. O., Feng, L., Hubbard, J., Banerjee, P., & Hill, E. M. (2019). Active Convergence of the India‐Burma‐Sunda Plates Revealed by a New Continuous GPS Network. Journal of Geophysical Research: Solid Earth, 124(3), 3155–3171. https://doi.org/10.1029/2018jb016480 DOI: https://doi.org/10.1029/2018JB016480
Maung, H. (1987). Transcurrent movements in the Burma–Andaman Sea region. Geology, 15(10), 911–912. DOI: https://doi.org/10.1130/0091-7613(1987)15<911:TMITBS>2.0.CO;2
Maurin, T., Masson, F., Rangin, C., Min, U. T., & Collard, P. (2010). First global positioning system results in northern Myanmar: Constant and localized slip rate along the Sagaing fault. Geology, 38(7), 591–594. https://doi.org/10.1130/g30872.1 DOI: https://doi.org/10.1130/G30872.1
McCalpin, J. P. (2009). Paleoseismology (2nd ed., p. 615). Academic Press, Amsterdam-London.
Melgar, D. (2025). Supplementary material for "Supershear source model of the 2025 M7.8 Myanmar earthquake and paleoseismology of the Sagaing Fault: regions of significant overlap with past earthquakes [Data set]. Zenodo. https://doi.org/https://doi.org/10.5281/zenodo.15529795 DOI: https://doi.org/10.31223/X5QT6G
Melgar, D., & Bock, Y. (2015). Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data. Journal of Geophysical Research: Solid Earth, 120(5), 3324–3349. https://doi.org/10.1002/2014jb011832 DOI: https://doi.org/10.1002/2014JB011832
Melgar, Diego, Ganas, A., Taymaz, T., Valkaniotis, S., Crowell, B. W., Kapetanidis, V., Tsironi, V., Yolsal-Çevikbilen, S., & Öcalan, T. (2020). Rupture kinematics of 2020 January 24 Mw 6.7 Doğanyol-Sivrice, Turkey earthquake on the East Anatolian Fault Zone imaged by space geodesy. Geophysical Journal International, 223(2), 862–874. https://doi.org/10.1093/gji/ggaa345 DOI: https://doi.org/10.1093/gji/ggaa345
Melgar, Diego, & Hayes, G. P. (2017). Systematic Observations of the Slip Pulse Properties of Large Earthquake Ruptures. Geophysical Research Letters, 44(19), 9691–9698. https://doi.org/10.1002/2017gl074916 DOI: https://doi.org/10.1002/2017GL074916
Melgar, Diego, Lin, T., Qingkai Kong, Christineruhl, & Marfito, B. (2021). dmelgarm/MudPy: v1.3. Zenodo. https://doi.org/10.5281/ZENODO.5397091
Melgar, Diego, Taymaz, T., Ganas, A., Crowell, B., Öcalan, T., Kahraman, M., Tsironi, V., Yolsal-Çevikbil, S., Valkaniotis, S., Irmak, T. S., Eken, T., Erman, C., Özkan, B., Dogan, A. H., & Altuntaş, C. (2023). Sub- and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye. Seismica, 2(3). https://doi.org/10.26443/seismica.v2i3.387 DOI: https://doi.org/10.26443/seismica.v2i3.387
Mon, C. T., Gong, X., Wen, Y., Jiang, M., Chen, Q., Zhang, M., Hou, G., Thant, M., Sein, K., & He, Y. (2020). Insight Into Major Active Faults in Central Myanmar and the Related Geodynamic Sources. Geophysical Research Letters, 47(8). https://doi.org/10.1029/2019gl086236 DOI: https://doi.org/10.1029/2019GL086236
Morley, C. K., & Arboit, F. (2019). Dating the onset of motion on the Sagaing fault: Evidence from detrital zircon and titanite U-Pb geochronology from the North Minwun Basin, Myanmar. Geology, 47(6), 581–585. https://doi.org/10.1130/g46321.1 DOI: https://doi.org/10.1130/G46321.1
Myanmar Department of Meteorology and Hydrology - National Earthquake Data Center. (2016). Myanmar National Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/MM
Nash, D. B. (1980). Morphologic Dating of Degraded Normal Fault Scarps. The Journal of Geology, 88(3), 353–360. https://doi.org/10.1086/628513 DOI: https://doi.org/10.1086/628513
National Research Council. (2007). Tools and methods for estimating populations at risk from natural disasters and complex humanitarian crises (1st ed., p. 264). National Academies Press.
Panda, D., Kundu, B., Gahalaut, V. K., & Rangin, C. (2018). Crustal deformation, spatial distribution of earthquakes and along strike segmentation of the Sagaing Fault, Myanmar. Journal of Asian Earth Sciences, 166, 89–94. https://doi.org/10.1016/j.jseaes.2018.07.029 DOI: https://doi.org/10.1016/j.jseaes.2018.07.029
Pasyanos, M. E., Masters, T. G., Laske, G., & Ma, Z. (2014). LITHO1.0: An updated crust and lithospheric model of the Earth. Journal of Geophysical Research: Solid Earth, 119(3), 2153–2173. https://doi.org/10.1002/2013jb010626 DOI: https://doi.org/10.1002/2013JB010626
Pathier, E., Fielding, E. J., Wright, T. J., Walker, R., Parsons, B. E., & Hensley, S. (2006). Displacement field and slip distribution of the 2005 Kashmir earthquake from SAR imagery. Geophysical Research Letters, 33(20). https://doi.org/10.1029/2006gl027193 DOI: https://doi.org/10.1029/2006GL027193
Pornsopin, P., Pananont, P., Furlong, K. P., & Sandvol, E. (2023). Sensor orientation of the TMD seismic network (Thailand) from P-wave particle motions. Geoscience Letters, 10(1). https://doi.org/10.1186/s40562-023-00278-7 DOI: https://doi.org/10.1186/s40562-023-00278-7
Rosen, P. A., Gurrola, E., Sacco, G. F., & Zebker, H. (2012). The InSAR scientific computing environment. EUSAR 2012; 9th European Conference on Synthetic Aperture Radar, 730–733.
Scharer, K. M., Biasi, G. P., Weldon, R. J., & Fumal, T. E. (2010). Quasi-periodic recurrence of large earthquakes on the southern San Andreas fault. Geology, 38(6), 555–558. https://doi.org/10.1130/g30746.1 DOI: https://doi.org/10.1130/G30746.1
Shi, X., Wang, Y., Sieh, K., Weldon, R., Feng, L., Chan, C., & Liu‐Zeng, J. (2018). Fault Slip and GPS Velocities Across the Shan Plateau Define a Curved Southwestward Crustal Motion Around the Eastern Himalayan Syntaxis. Journal of Geophysical Research: Solid Earth, 123(3), 2502–2518. https://doi.org/10.1002/2017jb015206 DOI: https://doi.org/10.1002/2017JB015206
Socquet, A., Vigny, C., Chamot‐Rooke, N., Simons, W., Rangin, C., & Ambrosius, B. (2006). India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS. Journal of Geophysical Research: Solid Earth, 111(B5). https://doi.org/10.1029/2005jb003877 DOI: https://doi.org/10.1029/2005JB003877
Steckler, M. S., Mondal, D. R., Akhter, S. H., Seeber, L., Feng, L., Gale, J., Hill, E. M., & Howe, M. (2016). Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges. Nature Geoscience, 9(8), 615–618. https://doi.org/10.1038/ngeo2760 DOI: https://doi.org/10.1038/ngeo2760
Stein, R. S., Barka, A. A., & Dieterich, J. H. (1997). Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128(3). https://doi.org/10.1111/j.1365-246x.1997.tb05321.x DOI: https://doi.org/10.1111/j.1365-246X.1997.tb05321.x
Strozzi, T., Luckman, A., Murray, T., Wegmuller, U., & Werner, C. L. (2002). Glacier motion estimation using SAR offset-tracking procedures. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2384–2391. https://doi.org/10.1109/tgrs.2002.805079 DOI: https://doi.org/10.1109/TGRS.2002.805079
Thein, M., Mying, T., Tun, S. T., & Swe, T. L. (2009). Earthquake and Tsunami Hazard in Myanmar. Journal of Earthquake and Tsunami, 3(2), 43–57. https://doi.org/10.1142/s1793431109000482 DOI: https://doi.org/10.1142/S1793431109000482
Thiam, H. N., Htwe, Y. M. M., Kyaw, T. L., Tun, P. P., Min, Z., Htwe, S. H., Aung, T. M., Lin, K. K., Aung, M. M., Cristofaro, J. de, Franke, M., Radman, S., Lepiten, E., Wolin, E., & Hough, S. E. (2017). A Report on Upgraded Seismic Monitoring Stations in Myanmar: Station Performance and Site Response. Seismological Research Letters, 88(3), 926–934. https://doi.org/10.1785/0220160168 DOI: https://doi.org/10.1785/0220160168
Thingbaijam, K. K. S., Martin Mai, P., & Goda, K. (2017). New Empirical Earthquake Source‐Scaling Laws. Bulletin of the Seismological Society of America, 107(5), 2225–2246. https://doi.org/10.1785/0120170017 DOI: https://doi.org/10.1785/0120170017
Tin, T. Z. H., Nishimura, T., Hashimoto, M., Lindsey, E. O., Aung, L. T., Min, S. M., & Thant, M. (2022). Present-day crustal deformation and slip rate along the southern Sagaing fault in Myanmar by GNSS observation. Journal of Asian Earth Sciences, 228, 105125. https://doi.org/10.1016/j.jseaes.2022.105125 DOI: https://doi.org/10.1016/j.jseaes.2022.105125
Tsutsumi, H., & Sato, T. (2009). Tectonic Geomorphology of the Southernmost Sagaing Fault and Surface Rupture Associated with the May 1930 Pegu (Bago) Earthquake, Myanmar. Bulletin of the Seismological Society of America, 99(4), 2155–2168. https://doi.org/10.1785/0120080113 DOI: https://doi.org/10.1785/0120080113
Tun, S. T., & Watkinson, I. M. (2017). The Sagaing Fault, Myanmar. Geological Society, London, Memoirs, 48(1), 413–441. https://doi.org/10.1144/m48.19 DOI: https://doi.org/10.1144/M48.19
U.S. Geological Survey. (2025). M 7.7 - 2025 Mandalay, Burma (Myanmar) Earthquake,. https://earthquake.usgs.gov/earthquakes/eventpage/us7000pn9s/pager
U.S. Geological Survey Hazards Program. (2017). Advanced National Seismic System (ANSS) Comprehensive Catalog. U.S. Geological Survey. https://doi.org/10.5066/F7MS3QZH
Vigny, C., Socquet, A., Rangin, C., Chamot‐Rooke, N., Pubellier, M., Bouin, M., Bertrand, G., & Becker, M. (2003). Present‐day crustal deformation around Sagaing fault, Myanmar. Journal of Geophysical Research: Solid Earth, 108. https://doi.org/10.1029/2002jb001999 DOI: https://doi.org/10.1029/2002JB001999
Wald, D., Jaiswal, K., Marano, K., Earle, P., & Allen, T. (2010). Advancements in Casualty Modelling Facilitated by the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) System. In Human Casualties in Earthquakes (pp. 221–230). Springer Netherlands. https://doi.org/10.1007/978-90-481-9455-1_15 DOI: https://doi.org/10.1007/978-90-481-9455-1_15
Wallace, R. E. (1977). Profiles and ages of young fault scarps, north-central Nevada, Geol. Soc. Am. Bull, 88, 1267–1281. DOI: https://doi.org/10.1130/0016-7606(1977)88<1267:PAAOYF>2.0.CO;2
Wang, Y., Sieh, K., Aung, T., Min, S., Khaing, S. N., & Tun, S. T. (2011). Earthquakes and slip rate of the southern Sagaing fault: insights from an offset ancient fort wall, lower Burma (Myanmar). Geophysical Journal International, 185(1), 49–64. https://doi.org/10.1111/j.1365-246x.2010.04918.x DOI: https://doi.org/10.1111/j.1365-246X.2010.04918.x
Wang, Y., Sieh, K., Tun, S. T., Lai, K., & Myint, T. (2014). Active tectonics and earthquake potential of the Myanmar region. Journal of Geophysical Research: Solid Earth, 119(4), 3767–3822. https://doi.org/10.1002/2013jb010762 DOI: https://doi.org/10.1002/2013JB010762
Xiong, X., Shan, B., Zhou, Y. M., Wei, S. J., Li, Y. D., Wang, R. J., & Zheng, Y. (2017). Coulomb stress transfer and accumulation on the Sagaing Fault, Myanmar, over the past 110 years and its implications for seismic hazard. Geophysical Research Letters, 44(10), 4781–4789. https://doi.org/10.1002/2017gl072770 DOI: https://doi.org/10.1002/2017GL072770
Xu, X., Tong, X., Sandwell, D. T., Milliner, C. W. D., Dolan, J. F., Hollingsworth, J., Leprince, S., & Ayoub, F. (2016). Refining the shallow slip deficit. Geophysical Journal International, 204(3), 1843–1862. https://doi.org/10.1093/gji/ggv563 DOI: https://doi.org/10.1093/gji/ggv563
Yang, S., Xiao, Z., Wei, S., He, Y., Mon, C. T., Hou, G., Thant, M., Sein, K., & Jiang, M. (2024). New Insights Into Active Faults Revealed by a Deep‐Learning‐Based Earthquake Catalog in Central Myanmar. Geophysical Research Letters, 51(2). https://doi.org/10.1029/2023gl105159 DOI: https://doi.org/10.1029/2023GL105159
Ye, L., Lay, T., & Kanamori, H. (2025). The 28 March 2025 M w 7.8 Myanmar Earthquake: Preliminary Analysis of an∼ 480 km Long Intermittent Supershear Rupture. The Seismic Record, 5(3). https://doi.org/https://doi.org/10.1785/0320250021 DOI: https://doi.org/10.1785/0320250021
Zhang, X., Feng, W., Du, H., Samsonov, S., & Yi, L. (2022). Supershear Rupture During the 2021 MW 7.4 Maduo, China, Earthquake. Geophysical Research Letters, 49(6). https://doi.org/10.1029/2022gl097984 DOI: https://doi.org/10.1029/2022GL097984
Zheng, G., Wang, H., Wright, T. J., Lou, Y., Zhang, R., Zhang, W., Shi, C., Huang, J., & Wei, N. (2017). Crustal Deformation in the India‐Eurasia Collision Zone From 25 Years of GPS Measurements. Journal of Geophysical Research: Solid Earth, 122(11), 9290–9312. https://doi.org/10.1002/2017jb014465 DOI: https://doi.org/10.1002/2017JB014465
Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619–627. https://doi.org/10.1046/j.1365-246x.2002.01610.x DOI: https://doi.org/10.1046/j.1365-246X.2002.01610.x
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Diego Melgar, Ray Weldon, Yu Wang, Mary Grace Bato, Lin Thu Aung, Xuhua Shi, Weerachat Wiwegwing, Saw Ngwe Khaing, Soe Min, Myo Thant, Cole Speed, Robert Zinke, Eric Fielding, Aron Meltzner, Timothy Dawson

This work is licensed under a Creative Commons Attribution 4.0 International License.