The Deep Lithospheric Structure of the South Australian Craton Revealed by Teleseismic Rayleigh Wave Tomography
DOI:
https://doi.org/10.26443/seismica.v4i2.1772Keywords:
surface waves, seismic tomography, craton, AustraliaAbstract
We used teleseismic Rayleigh waves recorded by three recent broadband seismic arrays in southern Australia to develop a shear wave velocity model of the South Australian Craton from the lower crust to 250 km depth and compare this with isotope data, xenolith data, and 3D mantle resistivity structure. At ~75–150 km depth, the seismic expression of cratonic core lithosphere encompasses the eastern Gawler Craton, Curnamona Province, and intervening Adelaide Superbasin north of ~33°S. The inference of contiguous cratonic lithospheric mantle between the Gawler Craton and Curnamona Province may have implications for models of Rodinia breakup. Cratonic core lithospheric mantle is modelled as terminating substantially inboard of the conventionally-defined western margin of the Gawler Craton, but extending southward and northeastward beyond the conventionally-defined Curnamona Province boundary. Geophysical signatures of cratonic core lithospheric mantle are absent under the southern Eyre Peninsula, possibly related to the Jurassic–Cretaceous separation of Australia and Antarctica. At depths >150 km, the deep cratonic keel is restricted to the eastern Gawler Craton and southern Curnamona Province. Major iron oxide-copper-gold (IOCG) deposits of the eastern Gawler Craton (e.g., Olympic Dam) and Curnamona Province reside above the seismically fastest lithospheric mantle in the region. This seismic signature might provide a useful precompetitive vector for IOCG prospectivity mapping.
References
Agrawal, S., Eakin, C. M., & O’Donnell, J. (2022). Characterizing the cover across South Australia: a simple passive-seismic method for estimating sedimentary thickness. Geophysical Journal International, 231(3), 1850–1864. https://doi.org/10.1093/gji/ggac294
Agrawal, S., Eakin, C. M., & O’Donnell, J. P. (2023). Tracking crustal thickness at the sediment inundated edge of the Gawler Craton, South Australia. Tectonophysics, 862, 229938. https://doi.org/10.1016/j.tecto.2023.229938
Armistead, S. E., Betts, P. G., Ailleres, L., Armit, R. J., & Williams, H. A. (2018). Cu-Au mineralisation in the Curnamona Province, South Australia: A hybrid stratiform genetic model for Mesoproterozoic IOCG systems in Australia. Ore Geology Reviews, 94, 104–117. https://doi.org/10.1016/j.oregeorev.2018.01.024
Betts, P. G., Giles, D., Foden, J., Schaefer, B. F., Mark, G., Pankhurst, M. J., Forbes, C. J., Williams, H. A., Chalmers, N. C., & Hills, Q. (2009). Mesoproterozoic plume‐modified orogenesis in eastern Precambrian Australia. Tectonics, 28(3). https://doi.org/10.1029/2008tc002325
Budd, A. R., & Skirrow, R. G. (2007). The Nature and Origin of Gold Deposits of the Tarcoola Goldfield and Implications for the Central Gawler Gold Province, South Australia. Economic Geology, 102(8), 1541–1563. https://doi.org/10.2113/gsecongeo.102.8.1541
Capon, J. (1970). Analysis of Rayleigh-wave multipath propagation at LASA. Bulletin of the Seismological Society of America, 60(5), 1701–1731. https://doi.org/10.1785/bssa0600051701
Caroline M. Eakin, & Robert Pickle. (2023). Seismic Network Around Kangaroo Eyre Yorke. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/9J20-YQ91
Chua, E. L., & Lebedev, S. (2025). Waveform tomography of the Antarctic Plate. Geophysical Journal International, 241(1), 219–240. https://doi.org/10.1093/gji/ggaf041
Curtis, S., & Thiel, S. (2019). Identifying lithospheric boundaries using magnetotellurics and Nd isotope geochemistry: An example from the Gawler Craton, Australia. Precambrian Research, 320, 403–423. https://doi.org/10.1016/j.precamres.2018.11.013
de Laat, J. I., Lebedev, S., Celli, N. L., Bonadio, R., Chagas de Melo, B., & Rawlinson, N. (2023). Structure and evolution of the Australian plate and underlying upper mantle from waveform tomography with massive data sets. Geophysical Journal International, 234(1), 153–189. https://doi.org/10.1093/gji/ggad062
Dreiling, J., Tilmann, F., Yuan, X., Haberland, C., & Seneviratne, S. W. M. (2020). Crustal Structure of Sri Lanka Derived From Joint Inversion of Surface Wave Dispersion and Receiver Functions Using a Bayesian Approach. Journal of Geophysical Research: Solid Earth, 125(5). https://doi.org/10.1029/2019jb018688
Eakin, C. (2019). Seismicity, Minerals, and Craton margins: The Lake Eyre Basin Seismic Deployment. ASEG Extended Abstracts, 2019(1), 1–2. https://doi.org/10.1080/22020586.2019.12072989
Eakin, C. M., Davies, D. R., Ghelichkhan, S., O’Donnell, J. P., & Agrawal, S. (2023). The Influence of Lithospheric Thickness Variations Beneath Australia on Seismic Anisotropy and Mantle Flow. Geochemistry, Geophysics, Geosystems, 24(9). https://doi.org/10.1029/2023gc011066
Eakin, C. M., Flashman, C., & Agrawal, S. (2021). Seismic anisotropy beneath Central Australia: A record of ancient lithospheric deformation. Tectonophysics, 820, 229123. https://doi.org/10.1016/j.tecto.2021.229123
Eaton, D. W., Darbyshire, F., Evans, R. L., Grütter, H., Jones, A. G., & Yuan, X. (2009). The elusive lithosphere–asthenosphere boundary (LAB) beneath cratons. Lithos, 109(1–2), 1–22. https://doi.org/10.1016/j.lithos.2008.05.009
Evernden, J. F. (1953). Direction of approach of Rayleigh waves and related problems: (Part I). Bulletin of the Seismological Society of America, 43(4), 335–374. https://doi.org/10.1785/bssa0430040335
Fichtner, A., Kennett, B. L. N., Igel, H., & Bunge, H.-P. (2010). Full waveform tomography for radially anisotropic structure: New insights into present and past states of the Australasian upper mantle. Earth and Planetary Science Letters, 290(3–4), 270–280. https://doi.org/10.1016/j.epsl.2009.12.003
Fichtner, A., Ritsema, J., & Thrastarson, S. (2025). A high-resolution discourse on seismic tomography. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 481(2320). https://doi.org/10.1098/rspa.2024.0955
Fishwick, S., & Rawlinson, N. (2012). 3-D structure of the Australian lithosphere from evolving seismic datasets. Australian Journal of Earth Sciences, 59(6), 809–826. https://doi.org/10.1080/08120099.2012.702319
Forsyth, D. W., & Li, A. (2005). Array analysis of two-dimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multipathing interference. In Seismic Earth: Array Analysis of Broadband Seismograms (pp. 81–97). American Geophysical Union. https://doi.org/10.1029/157gm06
Forsyth, D. W., Webb, S. C., Dorman, L. M., & Shen, Y. (1998). Phase Velocities of Rayleigh Waves in the MELT Experiment on the East Pacific Rise. Science, 280(5367), 1235–1238. https://doi.org/10.1126/science.280.5367.1235
Friederich, W., Wielandt, E., & Stange, S. (1994). Non-Plane Geometries of Seismic Surface Wavefields and Their Implications For Regional Surface-Wave Tomography. Geophysical Journal International, 119(3), 931–948. https://doi.org/10.1111/j.1365-246x.1994.tb04026.x
Groves, D. I., Bierlein, F. P., Meinert, L. D., & Hitzman, M. W. (2010). Iron Oxide Copper-Gold (IOCG) Deposits through Earth History: Implications for Origin, Lithospheric Setting, and Distinction from Other Epigenetic Iron Oxide Deposits. Economic Geology, 105(3), 641–654. https://doi.org/10.2113/gsecongeo.105.3.641
Groves, D. I., & Santosh, M. (2023). Mineral Systems, Earth Evolution, and Global Metallogeny. Elsevier.
Hand, M., Reid, A., & Jagodzinski, L. (2007). Tectonic Framework and Evolution of the Gawler Craton, Southern Australia. Economic Geology, 102(8), 1377–1395. https://doi.org/10.2113/gsecongeo.102.8.1377
Hansen, S. E., & Emry, E. L. (2025). East Antarctic tectonic basin structure and its implications for ice-sheet modeling and sea-level projections. Communications Earth & Environment, 6(1). https://doi.org/10.1038/s43247-025-02140-4
Harmon, N., Forsyth, D. W., & Weeraratne, D. S. (2009). Thickening of young Pacific lithosphere from high-resolution Rayleigh wave tomography: A test of the conductive cooling model. Earth and Planetary Science Letters, 278(1–2), 96–106. https://doi.org/10.1016/j.epsl.2008.11.025
Hartnady, M. I. H., Kirkland, C. L., Dutch, R. A., Bodorkos, S., & Jagodzinski, E. A. (2020). Evaluating zircon initial Hf isotopic composition using a combined SIMS–MC-LASS-ICP-MS approach: A case study from the Coompana Province in South Australia. Chemical Geology, 558, 119870. https://doi.org/10.1016/j.chemgeo.2020.119870
Heinson, G., Didana, Y., Soeffky, P., Thiel, S., & Wise, T. (2018). The crustal geophysical signature of a world-class magmatic mineral system. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-29016-2
Heinson, G. S., Direen, N. G., & Gill, R. M. (2006). Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia. Geology, 34(7), 573. https://doi.org/10.1130/g22222.1
Herrmann, R. B. (2013). Computer Programs in Seismology: An Evolving Tool for Instruction and Research. Seismological Research Letters, 84(6), 1081–1088. https://doi.org/10.1785/0220110096
Hitzman, M. W., Oreskes, N., & Einaudi, M. T. (1992). Geological characteristics and tectonic setting of proterozoic iron oxide (Cu U Au REE) deposits. Precambrian Research, 58(1–4), 241–287. https://doi.org/10.1016/0301-9268(92)90121-4
Huston, D. L., Blewett, R. S., & Champion, D. C. (2012). Australia through time: a summary of its tectonic and metallogenic evolution. Episodes, 35(1), 23–43. https://doi.org/10.18814/epiiugs/2012/v35i1/004
Jagodzinski, E. A., Reid, A. J., Crowley, J. L., Wade, C. E., & Curtis, S. (2023). Precise zircon U-Pb dating of the Mesoproterozoic Gawler large igneous province, South Australia. Results in Geochemistry, 10, 100020. https://doi.org/10.1016/j.ringeo.2022.100020
Kennett, B. L. N., Engdahl, E. R., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1), 108–124. https://doi.org/10.1111/j.1365-246x.1995.tb03540.x
Kennett, B. L. N., Fichtner, A., Fishwick, S., & Yoshizawa, K. (2012). Australian Seismological Reference Model (AuSREM): mantle component. Geophysical Journal International, 192(2), 871–887. https://doi.org/10.1093/gji/ggs065
Kennett, B. L. N., Gorbatov, A., Yuan, H., Agrawal, S., Murdie, R., Doublier, M. P., Eakin, C. M., Miller, M. S., Zhao, L., Czarnota, K., O’Donnell, J. P., Dentith, M., & Gessner, K. (2023). Refining the Moho across the Australian continent. Geophysical Journal International, 233(3), 1863–1877. https://doi.org/10.1093/gji/ggad035
Laske, G. (1995). Global observation of off-great-circle propagation of Long-Period surface waves. Geophysical Journal International, 123(1), 245–259. https://doi.org/10.1111/j.1365-246x.1995.tb06673.x
Lay, T., & Kanamori, H. (1985). Geometric effects of global lateral heterogeneity on long‐period surface wave propagation. Journal of Geophysical Research: Solid Earth, 90(B1), 605–621. https://doi.org/10.1029/jb090ib01p00605
Lebedev, S., Adam, J. M.-C., & Meier, T. (2013). Mapping the Moho with seismic surface waves: A review, resolution analysis, and recommended inversion strategies. Tectonophysics, 609, 377–394. https://doi.org/10.1016/j.tecto.2012.12.030
Li, A., & Burke, K. (2006). Upper mantle structure of southern Africa from Rayleigh wave tomography. Journal of Geophysical Research: Solid Earth, 111(B10). https://doi.org/10.1029/2006jb004321
Li, A., Forsyth, D. W., & Fischer, K. M. (2003). Shear velocity structure and azimuthal anisotropy beneath eastern North America from Rayleigh wave inversion. Journal of Geophysical Research: Solid Earth, 108(B8). https://doi.org/10.1029/2002jb002259
Liang, S., & Kennett, B. L. N. (2020). Passive seismic imaging of a craton edge – Central Australia. Tectonophysics, 797, 228662. https://doi.org/10.1016/j.tecto.2020.228662
Lloyd, A. J., Wiens, D. A., Zhu, H., Tromp, J., Nyblade, A. A., Aster, R. C., Hansen, S. E., Dalziel, I. W. D., Wilson, T. J., Ivins, E. R., & O’Donnell, J. P. (2020). Seismic Structure of the Antarctic Upper Mantle Imaged with Adjoint Tomography. Journal of Geophysical Research: Solid Earth, 125(3). https://doi.org/10.1029/2019jb017823
Lloyd, J. C., Blades, M. L., Counts, J. W., Collins, A. S., Amos, K. J., Wade, B. P., Hall, J. W., Hore, S., Ball, A. L., Shahin, S., & Drabsch, M. (2020). Neoproterozoic geochronology and provenance of the Adelaide Superbasin. Precambrian Research, 350, 105849. https://doi.org/10.1016/j.precamres.2020.105849
Magrini, F., Kästle, E., Pilia, S., Rawlinson, N., & De Siena, L. (2023). A New Shear‐Velocity Model of Continental Australia Based on Multi‐Scale Surface‐Wave Tomography. Journal of Geophysical Research: Solid Earth, 128(7). https://doi.org/10.1029/2023jb026688
Morrissey, L. J., Hand, M., Wade, B. P., & Szpunar, M. (2013). Early Mesoproterozoic metamorphism in the Barossa Complex, South Australia: links with the eastern margin of Proterozoic Australia. Australian Journal of Earth Sciences, 60(8), 769–795. https://doi.org/10.1080/08120099.2013.860623
Myers, J. S., Shaw, R. D., & Tyler, I. M. (1996). Tectonic evolution of Proterozoic Australia. Tectonics, 15(6), 1431–1446. https://doi.org/10.1029/96tc02356
O’Donnell, J. P., Agrawal, S., Eakin, C. M., Thiel, S., Brand, K., Gorbatov, A., & Goleby, B. (2023). Mapping crustal structure across southern Australia using seismic ambient noise tomography. Gondwana Research, 121, 307–324. https://doi.org/10.1016/j.gr.2023.04.013
O’Donnell, J. P., Stuart, G. W., Brisbourne, A. M., Selway, K., Yang, Y., Nield, G. A., Whitehouse, P. L., Nyblade, A. A., Wiens, D. A., Aster, R. C., Anandakrishnan, S., Huerta, A. D., Wilson, T., & Winberry, J. P. (2019). The uppermost mantle seismic velocity structure of West Antarctica from Rayleigh wave tomography: Insights into tectonic structure and geothermal heat flow. Earth and Planetary Science Letters, 522, 219–233. https://doi.org/10.1016/j.epsl.2019.06.024
O’Donnell, J., Thiel, S., Robertson, K., Gorbatov, A., & Eakin, C. (2020). Using seismic tomography to inform mineral exploration in South Australia: the AusArray SA broadband seismic array. MESA J., 93(2), 24–31.
Pollett, A., Thiel, S., Bendall, B., Raimondo, T., & Hand, M. (2019). Mapping the Gawler Craton–Musgrave Province interface using integrated heat flow and magnetotellurics. Tectonophysics, 756, 43–56. https://doi.org/10.1016/j.tecto.2019.02.017
Preiss, W., Korsch, R., Blewett, R., Fomin, T., Cowley, W., Neumann, N., & Meixner, A. (2010). Geological interpretation of deep seismic reflection line 09GA-CG1: the Curnamona Province-Gawler Craton Link Line, South Australia. Geoscience Australia Record, 10, 66–76.
Preiss, W. V. (2000). The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction. Precambrian Research, 100(1–3), 21–63. https://doi.org/10.1016/s0301-9268(99)00068-6
Preiss, W. V., Belperio, A. P., Cowley, W. M., & Rankin, L. R. (1993). Neoproterozoic. In J. F. Drexel, W. V. Preiss, & A. J. Parker (Eds.), The Geology of South Australia: The Precambrian (Vol. 1, pp. 171–203). Geological Survey of South Australia.
Rawlinson, N., Pilia, S., Young, M., Salmon, M., & Yang, Y. (2016). Crust and upper mantle structure beneath southeast Australia from ambient noise and teleseismic tomography. Tectonophysics, 689, 143–156. https://doi.org/10.1016/j.tecto.2015.11.034
Rawlinson, N., Salmon, M., & Kennett, B. L. N. (2014). Transportable seismic array tomography in southeast Australia: Illuminating the transition from Proterozoic to Phanerozoic lithosphere. Lithos, 189, 65–76. https://doi.org/10.1016/j.lithos.2013.06.001
Reid, A. (2019). The Olympic Cu-Au Province, Gawler Craton: A Review of the Lithospheric Architecture, Geodynamic Setting, Alteration Systems, Cover Successions and Prospectivity. Minerals, 9(6), 371. https://doi.org/10.3390/min9060371
Reid, A. J., & Hand, M. (2012). Mesoarchean to Mesoproterozoic evolution of the southern Gawler Craton, South Australia. Episodes, 35(1), 216–225. https://doi.org/10.18814/epiiugs/2012/v35i1/021
Selway, K. (2013). On the Causes of Electrical Conductivity Anomalies in Tectonically Stable Lithosphere. Surveys in Geophysics, 35(1), 219–257. https://doi.org/10.1007/s10712-013-9235-1
Selway, K., Özaydın, S., & Payne, J. (2024). Metasomatism and depletion of the southern Gawler Craton from combined mantle xenocryst and AusLAMP magnetotelluric data. Exploration Geophysics, 55(5), 602–616. https://doi.org/10.1080/08123985.2023.2282711
Simons, F. J., & van der Hilst, R. D. (2002). Age‐dependent seismic thickness and mechanical strength of the Australian lithosphere. Geophysical Research Letters, 29(11). https://doi.org/10.1029/2002gl014962
Sippl, C. (2016). Moho geometry along a north–south passive seismic transect through Central Australia. Tectonophysics, 676, 56–69. https://doi.org/10.1016/j.tecto.2016.03.031
Skirrow, R. G. (2022). Iron oxide copper-gold (IOCG) deposits – A review (part 1): Settings, mineralogy, ore geochemistry and classification. Ore Geology Reviews, 140, 104569. https://doi.org/10.1016/j.oregeorev.2021.104569
Skirrow, R. G., Bastrakov, E. N., Barovich, K., Fraser, G. L., Creaser, R. A., Fanning, C. M., Raymond, O. L., & Davidson, G. J. (2007). Timing of Iron Oxide Cu-Au-(U) Hydrothermal Activity and Nd Isotope Constraints on Metal Sources in the Gawler Craton, South Australia. Economic Geology, 102(8), 1441–1470. https://doi.org/10.2113/gsecongeo.102.8.1441
Skirrow, R. G., van der Wielen, S. E., Champion, D. C., Czarnota, K., & Thiel, S. (2018). Lithospheric Architecture and Mantle Metasomatism Linked to Iron Oxide Cu‐Au Ore Formation: Multidisciplinary Evidence from the Olympic Dam Region, South Australia. Geochemistry, Geophysics, Geosystems, 19(8), 2673–2705. https://doi.org/10.1029/2018gc007561
Spetzler, J., Trampert, J., & Snieder, R. (2001). Are we exceeding the limits of the Great Circle Approximation in global surface wave tomography? Geophysical Research Letters, 28(12), 2341–2344. https://doi.org/10.1029/2000gl012691
Sudholz, Z. J., Yaxley, G. M., Jaques, A. L., Cooper, S. A., Czarnota, K., Taylor, W. R., Chen, J., & Knowles, B. M. (2022). Multi‐Stage Evolution of the South Australian Craton: Petrological Constraints on the Architecture, Lithology, and Geochemistry of the Lithospheric Mantle. Geochemistry, Geophysics, Geosystems, 23(11). https://doi.org/10.1029/2022gc010558
Sun, W., & Kennett, B. L. N. (2016). Uppermost mantle structure of the Australian continent from Pn traveltime tomography. Journal of Geophysical Research: Solid Earth, 121(3), 2004–2019. https://doi.org/10.1002/2015jb012597
Szpunar, M., Wade, B., Hand, M., & Barovich, K. (2007). Timing of Proterozoic high-grade metamorphism in the Barossa Complex, southern South Australia: exploring the extent of the 1590 Ma event. MESA J., 47, 21–27.
Thiel, S., Reid, A., Heinson, G., & Robertson, K. (2016). Insights into lithospheric architecture, fertilisation and fluid pathways from AusLAMP MT. ASEG Extended Abstracts, 2016(1), 1–6. https://doi.org/10.1071/aseg2016ab261
van der Hilst, R., Kennett, B., Christie, D., & Grant, J. (1994). Project Skippy explores lithosphere and mantle beneath Australia. Eos, Transactions American Geophysical Union, 75(15), 177–181. https://doi.org/10.1029/94eo00857
Wade, B. P., Kelsey, D. E., Hand, M., & Barovich, K. M. (2008). The Musgrave Province: Stitching north, west and south Australia. Precambrian Research, 166(1–4), 370–386. https://doi.org/10.1016/j.precamres.2007.05.007
Wade, C. E. (2011). Definition of the mesoproterozoic ninnerie supersuite, Curnamona Province, South Australia. Mesa J., 62, 25–42.
Wade, C. E., Corrick, A. J., Gouthas, G., Wise, T., & Dutch, R. (2024). Sm-Nd isotopic data for South Australia: dataset and report. MESA J., 98, 29–038.
Wade, C. E., Payne, J. L., Barovich, K., Gilbert, S., Wade, B. P., Crowley, J. L., Reid, A., & Jagodzinski, E. A. (2022). Zircon trace element geochemistry as an indicator of magma fertility in iron oxide copper-gold provinces. Economic Geology, 117(3), 703–718. https://doi.org/10.5382/econgeo.4886
Wade, C. E., Payne, J. L., Barovich, K. M., & Reid, A. J. (2019). Heterogeneity of the sub-continental lithospheric mantle and ‘non-juvenile’ mantle additions to a Proterozoic silicic large igneous province. Lithos, 340–341, 87–107. https://doi.org/10.1016/j.lithos.2019.05.005
Wade, C. E., Payne, J. L., Barovich, K. M., Reid, A. J., Jagodzinski, E. A., Curtis, S., & Hill, J. (2022). Temporal, geochemical and isotopic constraints on plume-driven felsic and mafic components in a Mesoproterozoic flood rhyolite province. Results in Geochemistry, 9, 100019. https://doi.org/10.1016/j.ringeo.2022.100019
Wade, C. E., Reid, A. J., Wingate, M. T. D., Jagodzinski, E. A., & Barovich, K. (2012). Geochemistry and geochronology of the c. 1585Ma Benagerie Volcanic Suite, southern Australia: Relationship to the Gawler Range Volcanics and implications for the petrogenesis of a Mesoproterozoic silicic large igneous province. Precambrian Research, 206–207, 17–35. https://doi.org/10.1016/j.precamres.2012.02.020
Weeraratne, D. S., Forsyth, D. W., Fischer, K. M., & Nyblade, A. A. (2003). Evidence for an upper mantle plume beneath the Tanzanian craton from Rayleigh wave tomography. Journal of Geophysical Research: Solid Earth, 108(B9). https://doi.org/10.1029/2002jb002273
Wei, Z., Kennett, B. L. N., & Sun, W. (2018). Sn-wave velocity structure of the uppermost mantle beneath the Australian continent. Geophysical Journal International, 213(3), 2071–2084. https://doi.org/10.1093/gji/ggy109
Wessel, P., & Smith, W. H. F. (1998). New, improved version of the Generic Mapping Tools released. Eos, Transactions American Geophysical Union, 79(47), 579–579. https://doi.org/10.1029/98eo00426
Williams, H. A., Stewart, J. R., & Betts, P. G. (2009). Imposition of a Proterozoic salient on a Palaeozoic orogen at the eastern margin of Gondwana. Gondwana Research, 16(3–4), 669–686. https://doi.org/10.1016/j.gr.2009.06.006
Wise, T., & Thiel, S. (2020). Proterozoic tectonothermal processes imaged with magnetotellurics and seismic reflection in southern Australia. Geoscience Frontiers, 11(3), 885–893. https://doi.org/10.1016/j.gsf.2019.09.006
Woodhouse, J. H., & Wong, Y. K. (1986). Amplitude, phase and path anomalies of mantle waves. Geophysical Journal International, 87(3), 753–773. https://doi.org/10.1111/j.1365-246x.1986.tb01970.x
Yang, Y., & Forsyth, D. W. (2006a). Rayleigh wave phase velocities, small‐scale convection, and azimuthal anisotropy beneath southern California. Journal of Geophysical Research: Solid Earth, 111(B7). https://doi.org/10.1029/2005jb004180
Yang, Y., & Forsyth, D. W. (2006b). Regional tomographic inversion of the amplitude and phase of Rayleigh waves with 2-D sensitivity kernels. Geophysical Journal International, 166(3), 1148–1160. https://doi.org/10.1111/j.1365-246x.2006.02972.x
Yoshizawa, K. (2014). Radially anisotropic 3-D shear wave structure of the Australian lithosphere and asthenosphere from multi-mode surface waves. Physics of the Earth and Planetary Interiors, 235, 33–48. https://doi.org/10.1016/j.pepi.2014.07.008
Yoshizawa, K., & Kennett, B. L. N. (2015). The lithosphere‐asthenosphere transition and radial anisotropy beneath the Australian continent. Geophysical Research Letters, 42(10), 3839–3846. https://doi.org/10.1002/2015gl063845
Zielhuis, A., & Hilst, R. D. (1996). Upper-mantle shear velocity beneath eastern Australia from inversion of waveforms from SKIPPY portable arrays. Geophysical Journal International, 127(1), 1–16. https://doi.org/10.1111/j.1365-246x.1996.tb01530.x
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 John Paul O'Donnell, Kate Selway, Claire Wade, Stephan Thiel, Caroline Eakin, Robert Pickle, Shubham Agrawal, Bruce Goleby, Alexei Gorbatov

This work is licensed under a Creative Commons Attribution 4.0 International License.

