23 April 2025 Marmara Sea (Mw 6.3), Türkiye earthquake: mainshock, aftershock, and ground observations

Authors

DOI:

https://doi.org/10.26443/seismica.v4i2.1773

Keywords:

Earthquake ground motion, aftershock analysis, moment tensor inversion

Abstract

On 23 April 2025, a Mw 6.3 earthquake struck the Sea of Marmara near the Kumburgaz segment of the North Anatolian Fault (NAF), triggering over 500 aftershocks within 15 days. This study presents a rapid assessment of the event through aftershock relocation using double-difference technique, full moment tensor inversion of the mainshock, and ground motion analysis. The mainshock exhibited a strike-slip mechanism at a depth of 6 km with a significant non-double-couple component (40%). The aftershocks mostly occurred east of the mainshock, primarily within 10 km depth. Shakemaps derived from ground motion recordings highlight peak ground accelerations exceeding 210 cm/s2 east of the mainshock in western Istanbul and Modified Mercalli Intensities reaching level 6. The ground motion prediction equation developed for the region slightly underestimated the peak ground motions in short-period pseudo-spectral acceleration (PSA) and peak ground acceleration (PGA). Comparison with Turkish seismic design codes revealed that short-period PSA reached code limits in some stations, raising concerns for structural resilience especially in older buildings in those areas.

References

Akinci, A., Aochi, H., Herrero, A., Pischiutta, M., & Karanikas, D. (2017). Physics-based broadband ground-motion simulations for probable Mwgeq 7.0 earthquakes in the Marmara Sea region (Turkey). Bulletin of the Seismological Society of America, 107(3), 1307–1323. https://doi.org/10.1785/0120160096

Akinci, A., Dindar, A. A., Bal, I. E., Ertuncay, D., Smyrou, E., & Cheloni, D. (2025). Characteristics of strong ground motions and structural damage patterns from the February 6th, 2023 Kahramanmaraş earthquakes, Türkiye. Natural Hazards, 121(2), 1209–1239. https://doi.org/10.1007/s11069-024-06856-y

Akkar, S., Azak, T., Can, T., Çeken, U., Demircioğlu Tümsa, M., Duman, T., Erdik, M., Ergintav, S., Kadirioğlu, F., Kalafat, D., & others. (2018). Evolution of seismic hazard maps in Turkey. Bulletin of Earthquake Engineering, 16, 3197–3228. https://doi.org/10.1007/s10518-018-0349-1

Aksoy, M., Vallée, M., & Çakir, Z. (2010). Rupture characteristics of the AD 1912 Murefte (Ganos) earthquake segment of the North Anatolian Fault (western Turkey). Geology, 38, 991–994. https://doi.org/10.1130/G31447.1

Ambraseys, N. (2002). The seismic activity of the Marmara Sea region over the last 2000 years. Bulletin of the Seismological Society of America, 92(1), 1–18. https://doi.org/10.1785/0120000843

Aristotle University of Thessaloniki. (1981). Aristotle University of Thessaloniki Seismological Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HT

Atakan, K., Ojeda, A., Meghraoui, M., Barka, A. A., Erdik, M., & Bodare, A. (2002). Seismic hazard in Istanbul following the 17 August 1999 Izmit and 12 November 1999 Duzce earthquakes. Bulletin of the Seismological Society of America, 92(1), 466–482. https://doi.org/10.1785/0120000828

Bassin, C., Laske, G., & Masters, G. (2000). The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans AGU, 81, F897.

Bécel, A., Laigle, M., de Voogd, B., Hirn, A., Taymaz, T., Galvé, A., Shimamura, H., Murai, Y., Lépine, J.-C., Sapin, M., & Özalaybey, S. (2009). Moho, crustal architecture and deep deformation under the North Marmara Trough, from the SEISMARMARA Leg 1 offshore–onshore reflection–refraction survey. Tectonophysics, 467(1), 1–21. https://doi.org/10.1016/j.tecto.2008.10.022

Becker, D., Martı́nez-Garzón, P., Wollin, C., Kılıç, T., & Bohnhoff, M. (2023). Variation of fault creep along the overdue Istanbul-Marmara seismic gap in NW Türkiye. Geophysical Research Letters, 50(6), e2022GL101471. https://doi.org/10.1029/2022GL101471

Bertolini, L., Elsener, B., Pedeferri, P., Redaelli, E., & Polder, R. B. (2013). Corrosion of steel in concrete: prevention, diagnosis, repair. John Wiley & Sons.

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python toolbox for seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530

Bohnhoff, M., Bulut, F., Dresen, G., Malin, P. E., Eken, T., & Aktar, M. (2013). An earthquake gap south of Istanbul. Nature Communications, 4(1), 1999. https://doi.org/10.1038/ncomms2999

Büyükakpınar, P., Aktar, M., Petersen, G., & Köseoğlu, A. (2021). Orientations of Broadband Stations of the KOERI Seismic Network (Turkey) from Two Independent Methods: P‐ and Rayleigh‐Wave Polarization. Seismological Research Letters, 92(3), 1512–1521. https://doi.org/10.1785/0220200362

Büyükakpınar, P., Cannata, A., Cannavò, F., Carbone, D., De Plaen, R. S. M., Di Grazia, G., King, T., Lecocq, T., Liuzzo, M., & Salerno, G. (2022). Chronicle of Processes Leading to the 2018 Eruption at Mt. Etna As Inferred by Seismic Ambient Noise Along With Geophysical and Geochemical Observables. Journal of Geophysical Research: Solid Earth, 127(10), e2022JB025024. https://doi.org/10.1029/2022JB025024

Büyükakpınar, P., Isken, M. P., Heimann, S., Dahm, T., Kühn, D., Starke, J., López Comino, J. Á., Cesca, S., Doubravová, J., Gudnason, E. Á., & Ágústsdóttir, T. (2025). Understanding the seismic signature of transtensional opening in the Reykjanes Peninsula rift zone, SW Iceland. J. Geophys. Res., 130(1), e2024JB029566. https://doi.org/10.1029/2024JB029566

Büyüksaraç, A., Işık, E., & Bektaş, Ö. (2022). A comparative evaluation of earthquake code change on seismic parameter and structural analysis; a case of Turkey. Arabian Journal for Science and Engineering, 47(10), 12301–12321. https://doi.org/10.1007/s13369-022-07099-4

Cogurcu, M. (2015). Construction and design defects in the residential buildings and observed earthquake damage types in Turkey. Natural Hazards and Earth System Sciences, 15(4), 931–945. https://doi.org/10.5194/nhess-15-931-2015

Danciu, L., Nandan, S., Reyes, C., Basili, R., Weatherill, G., Beauval, C., Rovida, A., Vilanova, S., Sesetyan, K., Bard, P.-Y., Cotton, F., Wiemer, S., & Giardini, D. (2021). The 2020 update of the European Seismic Hazard Model - ESHM20: Model overview [Techreport]. EFEHR European Facilities of Earthquake Hazard. https://doi.org/10.12686/a15

Disaster and Emergency Management Authority. (1973). Turkish National Strong Motion Network. Department of Earthquake, Disaster. https://doi.org/10.7914/SN/TK

Disaster and Emergency Management Authority. (1990). Turkish National Seismic Network. Department of Earthquake, Disaster. https://doi.org/10.7914/SN/TU

Dziewonski, A. M., Chou, T.-A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86(B4), 2825–2852. https://doi.org/10.1029/JB086iB04p02825

Eken, T., Bohnhoff, M., Bulut, F., Can, B., & Aktar, M. (2013). Crustal Anisotropy in the Eastern Sea of Marmara Region in Northwestern Turkey. Bulletin of the Seismological Society of America, 103(2A), 911–924. https://doi.org/10.1785/0120120156

Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002

Emre, O., Duman, T. Y., Ozalp, S., Saroglu, F., Olgun, S., Elmaci, H., & Can, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8), 3229–3275. https://doi.org/10.1007/s10518-016-0041-2

Erdik, M., Demircioglu, M., Sesetyan, K., Durukal, E., & Siyahi, B. (2004). Earthquake hazard in Marmara region, Turkey. Soil Dynamics and Earthquake Engineering, 24(8), 605–631. https://doi.org/10.1016/j.soildyn.2004.04.003

Erdik, M., Pınar, A., Kale, Ö., Altunel, E., Tümsa, D., Apaydın, N. M., undefinedomoglu, M., Sandıkkaya, M. A., & Güryuva, B. (2025). April 2025 magnitude 6.2 earthquake near Istanbul highlights strengths and weaknesses in seismic mitigation. Temblor. https://doi.org/10.32858/temblor.368

Ergin, M., Özalaybey, S., Aktar, M., & Yalcin, M. (2004). Site amplification at Avcılar, Istanbul. Tectonophysics, 391(1–4), 335–346. https://doi.org/10.1016/j.tecto.2004.07.021

Ergintav, S., Floyd, M., Paradissis, D., Karabulut, H., Vernant, P., Masson, F., Georgiev, I., Konca, A. O., Dogan, U., King, R., & Reilinger, R. (2023). New geodetic constraints on the role of faults and blocks vs. distribute strain in the Nubia-Arabia-Eurasia zone of active plate interactions. Turkish Journal of Earth Sciences, 32(3), Article 2. https://doi.org/10.55730/1300-0985.1842

Ergintav, S., Reilinger, R. E., Çakmak, R., Floyd, M., Cakir, Z., Doğan, U., King, R. W., McClusky, S., & Özener, H. (2014). Istanbul’s earthquake hot spots: Geodetic constraints on strain accumulation along faults in the Marmara seismic gap. Geophysical Research Letters, 41(16), 5783–5788. https://doi.org/10.1002/2014GL060985

Ertuncay, D., Simone Francesco, F., Büyükakpınar, P., & Onur, T. (2025). Dataset of “Initial observations of 23 April 2025 Marmara Sea, Türkiye earthquake: ground motion, seismic source, and aftershock analysis” article [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.16421725

Frohlich, C., Riedesel, M. A., & Apperson, K. D. (1989). Note concerning possible mechanisms for non-double-couple earthquake sources. Geophysical Research Letters, 16(6), 523–526. https://doi.org/10.1029/GL016i006p00523

GEOFON Data Centre. (1993). GEOFON Seismic Network. GFZ Data Services. https://doi.org/10.14470/TR560404

Geological and Seismological Institute of Moldova. (2007). Moldova Digital Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/MD

Got, J.-L., Fréchet, J., & Klein, F. W. (1994). Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea. Journal of Geophysical Research: Solid Earth, 99(B8), 15375–15386. https://doi.org/10.1029/94JB00577

Gunes, O. (2015). Turkey’s grand challenge: Disaster-proof building inventory within 20 years. Case Studies in Construction Materials, 2, 18–34. https://doi.org/10.1016/j.cscm.2014.12.003

Güzel, M., & Fraser, S. (2025). A magnitude 6.2 quake shakes Istanbul and injures more than 230 people. https://apnews.com/article/turkey-earthquake-istanbul-sea-marmara-magnitude-emergency-46f20a2c0b6fa3cad7634d28d1f7e5d7

Hasterok, D., Halpin, J., Collins, A., Hand, M., Kreemer, C., Gard, M., & Glorie, S. (2022). New maps of global geologic provinces and tectonic plates: global tectonics data and QGIS project file (Version 1) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.6586972

Heimann, S., Isken, M., Kühn, D., Sudhaus, H., Steinberg, A., Vasyura-Bathke, H., Daout, S., Cesca, S., & Dahm, T. (2018). Grond - A probabilistic earthquake source inversion framework (1.0) [Software]. https://doi.org/10.5880/GFZ.2.1.2018.003

Heimann, S., Kriegerowski, M., Isken, M., Cesca, S., Daout, S., Grigoli, F., Juretzek, C., Megies, T., Nooshiri, N., Steinberg, A., Sudhaus, H., Vasyura-Bathke, H., Willey, T., & Dahm, T. (2017). Pyrocko - An open-source seismology toolbox and library. GFZ Data Services. https://doi.org/10.5880/GFZ.2.1.2017.001

Heimann, S., Vasyura-Bathke, H., Sudhaus, H., Isken, M. P., Kriegerowski, M., Steinberg, A., & Dahm, T. (2019). A Python framework for efficient use of pre-computed Green’s functions in seismological and other physical forward and inverse source problems. Solid Earth, 10(6), 1921–1935. https://doi.org/10.5194/se-10-1921-2019

Infantino, M., Mazzieri, I., Özcebe, A. G., Paolucci, R., & Stupazzini, M. (2020). 3D physics-based numerical simulations of ground motion in Istanbul from earthquakes along the Marmara segment of the North Anatolian fault. Bulletin of the Seismological Society of America, 110(5), 2559–2576. https://doi.org/10.1785/0120190235

Institutions, M. P. P. (1990). Mediterranean Very Broadband Seismographic Network (MedNet) [Data set]. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/sd/fbbbtdtd6q

IPGP Data Center. (2024). IPGP Data Center. https://doi.org/10.17616/R31NJN23

Jamalreyhani, M., Pousse-Beltran, L., Hassanzadeh, M., Sadat Arabi, S., Bergman, E. A., Shamszadeh, A., Arvin, S., Fariborzi, N., & Songhori, A. (2023). Co-seismic slip of the 18 April 2021 Mw 5.9 Genaveh earthquake in the South Dezful Embayment of Zagros (Iran) and its aftershock sequence. Seismica, 2(1). https://doi.org/10.26443/seismica.v2i1.246

Kale, Ö., Akkar, S., Ansari, A., & Hamzehloo, H. (2015). A ground-motion predictive model for Iran and Turkey for horizontal PGA, PGV, and 5% damped response spectrum: Investigation of possible regional effects. Bulletin of the Seismological Society of America, 105(2A), 963–980. https://doi.org/10.1785/0120140134

Kandilli Observatory And Earthquake Research Institute, Boğaziçi University. (1971). Kandilli Observatory And Earthquake Research Institute (KOERI). International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/KO

Karabulut, H., Güvercin, S. E., Eskiköy, F., Konca, A. Ö., & Ergintav, S. (2021). The moderate size 2019 September M w 5.8 Silivri earthquake unveils the complexity of the Main Marmara Fault shear zone. Geophysical Journal International, 224(1), 377–388. https://doi.org/10.1093/gji/ggaa469

Karabulut, H., Schmittbuhl, J., Özalaybey, S., Lengline, O., Kömeç-Mutlu, A., Durand, V., Bouchon, M., Daniel, G., & Bouin, M. (2011). Evolution of the seismicity in the eastern Marmara Sea a decade before and after the 17 August 1999 Izmit earthquake. Tectonophysics, 510(1–2), 17–27. https://doi.org/10.1016/j.tecto.2011.07.009

Karabulut, S., & Özel, O. (2018). 3-D shear wave velocity structure beneath the European Side of Istanbul from seismic noise arrays analysis. Geophysical Journal International, 215(3), 1803–1823. https://doi.org/10.1093/gji/ggy370

Karasözen, E., Büyükakpınar, P., Ertuncay, D., Havazlı, E., & Oral, E. (2023). A call from early-career Turkish scientists: seismic resilience is only feasible with “earthquake culture.” Seismica, 2(3). https://doi.org/10.26443/seismica.v2i3.1012

Kenawy, M., & Pitarka, A. (2025). Performance assessment of near-fault buildings subjected to physics-based simulated earthquake ground motions with fling step. Earthquake Spectra, 41(1), 381–411. https://doi.org/10.1177/87552930241285022

Kilic, H., Tohumcu Özener, P., Yildirim, M., Özaydin, K., & Adatepe, Ş. (2005). Evaluation of Küçükçekmece region with respect to soil amplification. Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, 2667–2672. https://doi.org/10.3233/978-1-61499-656-9-2667

Klin, P., Laurenzano, G., Barnaba, C., Priolo, E., & Parolai, S. (2021). Site amplification at permanent stations in northeastern Italy. Bulletin of the Seismological Society of America, 111(4), 1885–1904. https://doi.org/10.1785/0120200361

Kuge, K., & Lay, T. (1994). Systematic non-double-couple components of earthquake mechanisms: The role of fault zone irregularity. Journal of Geophysical Research: Solid Earth, 99(B8), 15457–15467. https://doi.org/10.1029/94JB00140

Kühn, D., Heimann, S., Isken, M. P., Ruigrok, E., & Dost, B. (2020). Probabilistic Moment Tensor Inversion for Hydrocarbon-Induced Seismicity in the Groningen Gas Field, The Netherlands, Part 1: Testing. Bulletin of the Seismological Society of America, 110(5), 2095–2111. https://doi.org/10.1785/0120200099

Le Pichon, X., Şengör, A., Demirbağ, E., Rangin, C., Imren, C., Armijo, R., Görür, N., Çağatay, N., De Lepinay, B. M., Meyer, B., & others. (2001). The active main Marmara fault. Earth and Planetary Science Letters, 192(4), 595–616. https://doi.org/10.1016/S0012-821X(01)00449-6

Loth, C., & Baker, J. W. (2013). A Spatial Cross-correlation Model of Spectral Accelerations at Multiple Periods. Earthquake Engineering & Structural Dynamics, 42(3), 397–417. https://doi.org/10.1002/eqe.2212

Loth, C., & Baker, J. W. (2020). Erratum: A Spatial Cross-correlation Model for Ground Motion Spectral Accelerations at Multiple Periods. Earthquake Engineering & Structural Dynamics, 49(3), 315–316. https://doi.org/10.1002/eqe.3233

Metz, M., Maleki Asayesh, B., Mohseni Aref, M., Jamalreyhani, M., Büyükakpınar, P., & Dahm, T. (2023). The July–December 2022 earthquake sequence in the southeastern Fars arc of Zagros mountains, Iran. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.953

Morales-Beltran, M. (2025). Understanding 60 years of soft storey in Türkiye: an interdisciplinary perspective. Natural Hazards, 1–40. https://doi.org/10.1007/s11069-025-07258-4

National Institute for Earth Physics (NIEP Romania). (1994). Romanian Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/RO

National Institute of Geophysics, Geodesy and Geography - BAS. (1980). National Seismic Network of Bulgaria. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/BS

National Observatory of Athens, Institute of Geodynamics, Athens. (1975). National Observatory of Athens Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HL

Okay, H. B., & Özacar, A. A. (2024). A Novel VS 30 Prediction Strategy Taking Fluid Saturation into Account and a New VS 30 Model of Türkiye. Bulletin of the Seismological Society of America, 114(2), 1048–1065. https://doi.org/10.1785/0120230032

Özel, O., Cranswick, E., Meremonte, M., Erdik, M., & Safak, E. (2002). Site effects in Avcilar, west of Istanbul, Turkey, from strong-and weak-motion data. Bulletin of the Seismological Society of America, 92(1), 499–508. https://doi.org/10.1785/0120000827

Öztürk, Y. K., Konca, A. Ö., & Özel, N. M. (2025). 3D Dynamic Rupture Simulations for the Potential Main Marmara Fault Earthquake in the Sea of Marmara Based on the Inter-Seismic Strain Accumulation. Journal of Geophysical Research: Solid Earth, 130(7), e2024JB029585. https://doi.org/10.1029/2024JB029585

Parsons, T., Toda, S., Stein, R. S., Barka, A., & Dieterich, J. H. (2000). Heightened odds of large earthquakes near Istanbul: an interaction-based probability calculation. Science, 288(5466), 661–665. https://doi.org/10.1126/science.288.5466.661

Picozzi, M., Strollo, A., Parolai, S., Durukal, E., Özel, O., Karabulut, S., Zschau, J., & Erdik, M. (2009). Site characterization by seismic noise in Istanbul, Turkey. Soil Dynamics and Earthquake Engineering, 29(3), 469–482. https://doi.org/10.1016/j.soildyn.2008.05.007

Pyper Griffiths, J. H., Irfanoglu, A., & Pujol, S. (2007). Istanbul at the threshold: an evaluation of the seismic risk in Istanbul. Earthquake Spectra, 23(1), 63–75. https://doi.org/10.1193/1.2424988

Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., & others. (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5). https://doi.org/10.1029/2005JB004051

Rösler, B., Stein, S., Ringler, A., & Vackář, J. (2024). Apparent Non-Double-Couple Components as Artifacts of Moment Tensor Inversion. Seismica, 3(1). https://doi.org/10.26443/seismica.v3i1.1157

Rösler, B., Stein, S., & Spencer, B. (2023). When are Non-Double-Couple Components of Seismic Moment Tensors Reliable? Seismica, 2(1). https://doi.org/10.26443/seismica.v2i1.241

Şahin, M., Yaltırak, C., Bulut, F., & Garagon, A. (2022). Stress change generated by the 2019 İstanbul–Silivri earthquakes along the complex structure of the North Anatolian Fault in the Marmara Sea. Earth, Planets and Space, 74(1), 1–16. https://doi.org/10.1186/s40623-022-01706-2

Schmittbuhl, J., Karabulut, H., Lengliné, O., & Bouchon, M. (2016). Seismicity distribution and locking depth along the Main Marmara Fault, Turkey. Geochemistry, Geophysics, Geosystems, 17(3), 954–965. https://doi.org/10.1002/2015GC006120

Şengör, A., Tüysüz, O., Imren, C., Sakınç, M., Eyidoğan, H., Görür, N., Le Pichon, X., & Rangin, C. (2005). The North Anatolian fault: A new look. Annu. Rev. Earth Planet. Sci., 33(1), 37–112. https://doi.org/10.1146/annurev.earth.32.101802.120415

Somerville, P. G., Smith, N. F., Graves, R. W., & Abrahamson, N. A. (1997). Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity. Seismological Research Letters, 68(1), 199–222. https://doi.org/10.1785/gssrl.68.1.199

Stupazzini, M., Infantino, M., Allmann, A., & Paolucci, R. (2021). Physics-based probabilistic seismic hazard and loss assessment in large urban areas: A simplified application to Istanbul. Earthquake Engineering & Structural Dynamics, 50(1), 99–115. https://doi.org/10.1002/eqe.3365

Tan, O. (2024). Long-term aftershock properties of the catastrophic 6 February 2023 Kahramanmaraş (Türkiye) earthquake sequence. Acta Geophysica, 1–18. https://doi.org/10.1007/s11600-024-01419-y

Tan, O., Karagöz, Ö., Ergintav, S., & Duran, K. (2023). The neglected Istanbul earthquakes in the North Anatolian Shear Zone: tectonic implications and broad-band ground motion simulations for a future moderate event. Geophysical Journal International, 233(1), 700–723. https://doi.org/10.1093/gji/ggac477

Tezcan, S. S., Kaya, E., Bal, I. E., & Özdemir, Z. (2002). Seismic amplification at Avcılar, Istanbul. Engineering Structures, 24(5), 661–667. https://doi.org/10.1016/S0141-0296(02)00002-0

TÜBITAK Marmara Research Center. (2016). MRC Earth and Marine Sciences Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/TB

Turhan, F., Acarel, D., Plicka, V., Bohnhoff, M., Polat, R., & Zahradnı́k, J. (2023). Coseismic Faulting Complexity of the 2019 M w 5.7 Silivri Earthquake in the Central Marmara Seismic Gap, Offshore Istanbul. Seismological Society of America, 94(1), 75–86. https://doi.org/10.1785/0220220111

Türker, E., Yen, M.-H., Pilz, M., & Cotton, F. (2024). Significance of Pulse-Like Ground Motions and Directivity Effects in Moderate Earthquakes: The Example of the M w 6.1 Gölyaka-Düzce Earthquake on 23 November 2022. Bulletin of the Seismological Society of America, 114(2), 955–964. https://doi.org/10.1785/0120230043

U.S. Geological Survey, Earthquake Hazards Program. (2017). Advanced National Seismic System (ANSS) Comprehensive Catalog of Earthquake Events and Products. https://doi.org/10.5066/F7MS3QZH

Wald, D. J., & Worden, C. B. (2016). ShakeMap Manual. U.S. Geological Survey. https://doi.org/10.5066/F7D21VPQ

Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368. https://doi.org/10.1785/0120000006

Worden, C. B., Gerstenberger, M. C., Rhoades, D. A., & Wald, D. J. (2012). Probabilistic Relationships between Ground-Motion Parameters and Modified Mercalli Intensity in California. Bulletin of the Seismological Society of America, 102(1), 204–221. https://doi.org/10.1785/0120110156

Worden, C. B., Thompson, E. M., Baker, J. W., Bradley, B. A., Luco, N., & Wald, D. J. (2018). Spatial and Spectral Interpolation of Ground-Motion Intensity Measure Observations. Bulletin of the Seismological Society of America, 108(2), 866–875. https://doi.org/10.1785/0120170201

WorldPop, & Bondarenko, M. (2020). Individual countries 1km UN adjusted population density (2000-2020). University of Southampton.

Yakut, A., Sucuoğlu, H., & Akkar, S. (2012). Seismic risk prioritization of residential buildings in Istanbul. Earthquake Engineering & Structural Dynamics, 41(11), 1533–1547. https://doi.org/10.1002/eqe.2215

Yılmaz, Z., Konca, A. Ö., & Ergintav, S. (2022). The Effect of the 3-D Structure on Strain Accumulation and the Interseismic Behavior Along the North Anatolian Fault in the Sea of Marmara. Journal of Geophysical Research: Solid Earth, 127(3), e2021JB022838. https://doi.org/10.1029/2021JB022838

Downloads

Published

2025-11-11

How to Cite

Ertuncay, D., Buyukakpinar, P., Fornasari, S. F., & Tan, O. (2025). 23 April 2025 Marmara Sea (Mw 6.3), Türkiye earthquake: mainshock, aftershock, and ground observations. Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.1773

Issue

Section

Fast Reports