Adding strain rate information into a short-term seismicity model improves forecasting performances: the case of Campi Flegrei, Italy

Authors

DOI:

https://doi.org/10.26443/seismica.v4i2.1908

Abstract

Campi Flegrei is a large active volcanic caldera in southern Italy, currently undergoing a prolonged phase of unrest that began in 2005, characterized by ground uplift and an increase in seismicity. Classical short-term seismicity models, such as the temporal Epidemic Type Aftershock Sequence (ETAS) model, rely exclusively on earthquake catalog data and do not incorporate external forcing mechanisms like crustal deformation. In this study, we extend the ETAS model by integrating strain rate information derived from GNSS measurements, allowing the background rate to vary in time through a data-driven convolution with an empirically estimated response kernel. Using eleven years of observations (2013-2024), we compare the forecasting performance of the classical and deformation-driven ETAS models. Our results show that including strain rate significantly improves forecasting ability, as evidenced by a lower Akaike Information Criterion (AIC). This finding suggests that incorporating geodetic signals into seismicity models enhances their physical realism and predictive skill, providing a promising path toward Operational Earthquake Forecasting in active volcanic regions.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, proceedings of the 2nd international symposium on information, bn petrow, f. Czaki, Akademiai Kiado, Budapest.

Bevilacqua, A., Neri, A., De Martino, P., Giudicepietro, F., Macedonio, G., & Ricciolino, P. (2024). Accelerating upper crustal deformation and seismicity of Campi Flegrei caldera (Italy), during the 2000–2023 unrest. Communications Earth & Environment, 5(1), 742.

Chouet, B. A. (1996). Long-period volcano seismicity: its source and use in eruption forecasting. Nature, 380(6572), 309–316.

Console, R., Murru, M., & Lombardi, A. M. (2003). Refining earthquake clustering models. Journal of Geophysical Research: Solid Earth, 108(B10).

Convertito, V., Godano, C., Petrillo, G., & Tramelli, A. (2025). Insights from b value analysis of Campi Flegrei unrests. Scientific Reports, 15(1), 14974.

De Martino, P., Dolce, M., Brandi, G., Scarpato, G., & Tammaro, U. (2021). The ground deformation history of the neapolitan volcanic area (Campi Flegrei caldera, Somma–Vesuvius Volcano, and Ischia island) from 20 years of continuous GPS observations (2000–2019). Remote Sensing, 13(14), 2725.

De Natale, G., Troise, C., Pingue, F., Mastrolorenzo, G., Pappalardo, L., Battaglia, M., Boschi, E., & others. (2006). The Campi Flegrei caldera. Unrest mechanisms and hazard. Special Publication-Geological Socieity of London, 269, 25–45.

Giudicepietro, F., Avino, R., Bellucci Sessa, E., Bevilacqua, A., Bonano, M., Caliro, S., Casu, F., De Cesare, W., De Luca, C., De Martino, P., & others. (2025). Burst-like swarms in the Campi Flegrei caldera accelerating unrest from 2021 to 2024. Nature Communications, 16(1), 1548.

Glazner, A. F., & McNutt, S. R. (2021). Relationship Between Dike Injection and b-Value for Volcanic Earthquake Swarms. Journal of Geophysical Research: Solid Earth, 126(12), e2020JB021631. https://doi.org/10.1029/2020JB021631

Godano, C., Convertito, V., Tramelli, A., & Petrillo, G. (2025). How Ground Deformation Influences Earthquake Occurrence During the Ongoing Unrest at Campi Flegrei (2005-Present). ArXiv Preprint ArXiv:2503.20129.

Hainzl, S. (2003). Self-organization of earthquake swarms. Journal of Geodynamics, 35(1), 157–172. https://doi.org/10.1016/S0264-3707(02)00060-1

Hainzl, S., & Ogata, Y. (2005). Detecting fluid signals in seismicity data through statistical earthquake modeling. Journal of Geophysical Research: Solid Earth, 110(B5).

Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348–2350. https://doi.org/10.1029/JB084iB05p02348

Hasselmann, K., Hasselmann, S., Giering, R., Ocana, V., & Storch, H. (1997). Sensitivity study of optimal CO2 emission paths using a simplified structural integrated assessment model (SIAM). Climatic Change, 37(2), 345–386.

Herrmann, M., & Marzocchi, W. (2021). Inconsistencies and lurking pitfalls in the magnitude–frequency distribution of high-resolution earthquake catalogs. Seismological Society of America, 92(2A), 909–922.

Iervolino, I., Cito, P., De Falco, M., Festa, G., Herrmann, M., Lomax, A., Marzocchi, W., Santo, A., Strumia, C., Massaro, L., & others. (2024). Seismic risk mitigation at Campi Flegrei in volcanic unrest. Nature Communications, 15(1), 1–14.

Kim, T., & Avouac, J.-P. (2023). Stress-based and convolutional forecasting of injection-induced seismicity: Application to the Otaniemi geothermal reservoir stimulation. Journal of Geophysical Research: Solid Earth, 128(4), e2022JB024960.

Kumazawa, T., & Ogata, Y. (2013). Quantitative description of induced seismic activity before and after the 2011 Tohoku-Oki earthquake by nonstationary ETAS models. Journal of Geophysical Research: Solid Earth, 118(12), 6165–6182.

Kumazawa, T., & Ogata, Y. (2014). Nonstationary ETAS models for nonstandard earthquakes. The Annals of Applied Statistics, 8(3), 1825.

Lee, W. H. K., Bennett, R. E., & Meagher, K. L. (1972). A method of estimating magnitude of local earthquakes from signal duration. U.S. Geological Survey Open-File Report, 72–223, 1–28. https://doi.org/10.3133/ofr72223

Livi, R., Politi, P., & others. (2017). Nonequilibrium statistical physics: A modern perspective.

Lucarini, V. (2018). Revising and extending the linear response theory for statistical mechanical systems: Evaluating observables as predictors and predictands. Journal of Statistical Physics, 173(6), 1698–1721.

Mizrahi, L., Dallo, I., van der Elst, N. J., Christophersen, A., Spassiani, I., Werner, M. J., Iturrieta, P., Bayona, J. A., Iervolino, I., Schneider, M., & others. (2024). Developing, testing, and communicating earthquake forecasts: Current practices and future directions. Reviews of Geophysics, 62(3), e2023RG000823.

Ogata, Y. (1985). Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes. Research Memo. (Technical Report) Inst. Statist. Math., Tokyo., 288.

Ogata, Y. (1988). Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes. J. Amer. Statist. Assoc. , 83, 9–27.

Ogata, Y. (1998). Space-time point-process models for earthquake occurrences. Annals of the Institute of Statistical Mathematics, 50, 379–402.

Petrillo, G., Kumazawa, T., Napolitano, F., Capuano, P., & Zhuang, J. (2024). Fluids-triggered swarm sequence supported by a nonstationary epidemic-like description of seismicity. Seismological Research Letters, 95(6), 3207–3220.

Petrillo, G., & Lippiello, E. (2021). Testing of the foreshock hypothesis within an epidemic like description of seismicity. Geophysical Journal International, 225(2), 1236–1257.

Petrillo, G., & Lippiello, E. (2023). Incorporating foreshocks in an epidemic-like description of seismic occurrence in Italy. Applied Sciences, 13(8), 4891.

Petrillo, G., & Zhuang, J. (2024). Bayesian earthquake forecasting approach based on the epidemic type aftershock sequence model. Earth, Planets and Space, 76(1), 78.

Ricciolino, P., Lo Bascio, D., & Esposito, R. (2024). GOSSIP-Database sismologico Pubblico INGV-Osservatorio Vesuviano. Istituto Nazionale Di Geofisica e Vulcanologia (INGV).

Shcherbakov, R. (2024). A stochastic model for induced seismicity at the geothermal systems: A case of the geysers. Seismological Research Letters, 95(6), 3545–3556.

Toda, S., Stein, R., & Sagiya, T. (2002). Evidence from the AD 2000 Izu islands earthquake swarm that stressing rate governs seismicity. Nature, 419, 58–61. https://doi.org/10.1038/nature00997

Tramelli, A., Godano, C., Ricciolino, P., Giudicepietro, F., Caliro, S., Orazi, M., De Martino, P., & Chiodini, G. (2021). Statistics of seismicity to investigate the Campi Flegrei caldera unrest. Scientific Reports, 11(1), 7211.

Zhuang, J., Ogata, Y., & Wang, T. (2017). Data completeness of the Kumamoto earthquake sequence in the JMA catalog and its influence on the estimation of the ETAS parameters. Earth, Planets and Space, 69(1), 1–12.

Downloads

Additional Files

Published

2025-09-16

How to Cite

Petrillo, G., & Taroni, M. (2025). Adding strain rate information into a short-term seismicity model improves forecasting performances: the case of Campi Flegrei, Italy. Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.1908

Issue

Section

Fast Reports