Tilt Corrections for Normal Mode Observations on Ocean Bottom Seismic Data, an example from the PI-LAB experiment
DOI:
https://doi.org/10.26443/seismica.v1i1.196Keywords:
normal modes, ocean bottom seismometer, marine geophysicsAbstract
Earth's normal modes are fundamental observations used in global seismic tomography to understand Earth structure. Land seismic station coverage is sufficient to constrain the broadest scale Earth structures. However, 70% of Earth's surface is covered by the oceans, hampering our ability to observe variations in local mode frequencies that contribute to imaging small-scale structures. Broadband ocean bottom seismometers can record spheroidal modes to fill in gaps in global data coverage. Ocean bottom recordings are contaminated by signals from complex interactions between ocean and solid Earth dynamics at normal mode frequencies. We present a method for correcting tilt on broadband ocean bottom seismometers by rotation. The correction improves the ability of some instruments to observe spheroidal modes down to 0S4. We demonstrate this method using 15 broadband ocean bottom seismometers from the PI-LAB array. We measure normal mode peak frequency shifts and compare with 1-D reference mode frequencies and predictions from 3-D global models. Our measurements agree with the 3-D models for modes between 0S14 - 0S37 with small but significant differences. These differences likely reflect real Earth structure. This suggests incorporating ocean bottom normal mode measurements into global inversions will improve models of global seismic velocity structure.
References
Agius, M., Harmon, N., Rychert, C. A., Tharimena, S., & Kendall, J. M. (2018). Sediment Characterization at the Equatorial Mid‐Atlantic Ridge From P‐to‐S Teleseismic Phase Conversions Recorded on the PI‐LAB Experiment. Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL080565
Agius, M. R., Rychert, C. A., Harmon, N., Tharimena, S., & Kendall, J. M. (2021). A thin mantle transition zone beneath the equatorial Mid-Atlantic Ridge. Nature, 589(7843), 562–566. https://doi.org/10.1038/s41586-020-03139-x
Anarde, K. A., & Laske, G. (2010, December 1). A Joint Rayleigh and Love Wave Analysis for the Hawaiian PLUME. Project AGU Fall Meeting.
Backus, G. E. (1964). Geographical interpretation of measurements of average phase velocities of surface waves over great circular and great semi-circular paths. Bull. Seis. Soc. Am, 54(2), 571–610. https://doi.org/10.1785/bssa0540020571
Bécel, A., Laigle, M., Diaz, J., Montagner, J.-P., & Hirn, A. (2011). Earth’s free oscillations recorded by free-fall OBS ocean-bottom seismometers at the Lesser Antilles subduction zone. Geophysical Research Letters, 38(24). https://doi.org/10.1029/2011GL049533
Bell, S. W., Forsyth, D. W., & Ruan, Y. (2015). Removing Noise from the Vertical Component Records of Ocean-Bottom Seismometers: Results from Year One of the Cascadia Initiative. Bull. Seis. Soc. Am, 105(1), 300–313. https://doi.org/10.1785/0120140054
Berger, J., Laske, G., Babcock, J., & Orcutt, J. (2016). An ocean bottom seismic observatory with near real-time telemetry. Earth and Space Science, 3(2), 68–77. https://doi.org/10.1002/2015EA000137
Bogiatzis, P., Karamitrou, A., Ward Neale, J., Harmon, N., Rychert, C. A., & Srokosz, M. (2020). Source Regions of Infragravity Waves Recorded at the Bottom of the Equatorial Atlantic Ocean, Using OBS of the PI-LAB Experiment. Journal of Geophysical Research: Oceans, 125(6), 2019 015430. https://doi.org/10.1029/2019JC015430
Bowden, D. C., Kohler, M. D., Tsai, V. C., & Weeraratne, D. S. (2016). Offshore Southern California lithospheric velocity structure from noise cross-correlation functions. Journal of Geophysical Research: Solid Earth, 121(5), 3415–3427. https://doi.org/10.1002/2016JB012919
Butler, R., Lay, T., Creager, K., Earl, P., Fischer, K., Gaherty, J., Laske, G., Leith, B., Park, J., Ritzwolle, M., Tromp, J., & Wen, L. (2004). The global seismographic network surpasses its design goal. Eos, Transactions American Geophysical Union, 85(23), 225–229. https://doi.org/10.1029/2004EO230001
Cox, C., Deaton, T., & Webb, S. (1984). A Deep-Sea Differential Pressure Gauge. Journal of Atmospheric and Oceanic Technology, 1(3), 237–246. https://doi.org/10.1175/1520-0426(1984)001
Crawford, W. C., & Webb, S. (2000). Identifying and Removing Tilt Noise from Low-Frequency (<0.1 Hz) Seafloor Vertical Seismic Data. Bull. Seismol. Soc. Am, 90(4), 952–963.
Dahlen, F. A. (1982). The effect of data windows on the estimation of free oscillation parameters. Geophys. J. Int, 69(2), 537–549. https://doi.org/10.1111/j.1365-246X.1982.tb04964.x
Dahlen, F. A., & Tromp, J. (1998). Theoretical Global Seismology. Princeton University Press.
Deen, M., Wielandt, E., Stutzmann, E., Crawford, W., Barruol, G., & Sigloch, K. (2017). First Observation of the Earth’s Permanent Free Oscillations on Ocean Bottom Seismometers. Geophysical Research Letters, 44(21), 10,988-910,996. https://doi.org/10.1002/2017GL074892
Duennebier, F. K., Harris, D. W., Jolly, J., Caplan-Auerbach, J., Jordan, R., Copson, D., Stiffel, K., Babinec, J., & Bosel, J. (2002). HUGO: the Hawaii Undersea Geo-Observatory. IEEE Journal of Oceanic Engineering, 27(2), 218–227. https://doi.org/10.1109/JOE.2002.1002476
Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4), 297–356.
Fischer, K. M., Rychert, C. A., Dalton, C. A., Miller, M. S., Beghein, C., & Schutt, D. L. (2020). A comparison of oceanic and continental mantle lithosphere. Physics of the Earth and Planetary Interiors, 309, 106600. https://doi.org/10.1016/j.pepi.2020.106600
Gilbert, F., & Dziewonski, A. M. (1975). An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 278(1280), 187–269. https://doi.org/10.1098/rsta.1975.0025
Harmon, N., Rychert, C. A., Agius, M. R., Tharimena, S., Le Bas, T. P., Kendall, J. M., & Constable, S. (2018). Marine geophysical investigation of the Chain Fracture Zone in the equatorial Atlantic from the PI-LAB Experiment. J. Geophys. Res, 123, 11,016-011,030. https://doi.org/10.1029/2018JB015982
Harmon, N., Rychert, C. A., Kendall, J. M., Agius, M., Bogiatzis, P., & Tharimena, S. (2020). Evolution of the Oceanic Lithosphere in the Equatorial Atlantic From Rayleigh Wave Tomography, Evidence for Small-Scale Convection From the PI-LAB Experiment. Geochemistry Geophysics Geosystems, 21(9). https://doi.org/10.1029/2020GC009174
Harmon, N., Wang, S., Rychert, C. A., Constable, S., & Kendall, J. M. (2021). Shear Velocity Inversion Guided by Resistivity Structure From the PI-LAB Experiment for Integrated Estimates of Partial Melt in the Mantle. Journal of Geophysical Research: Solid Earth, 126(8), 2021 022202. https://doi.org/10.1029/2021JB022202
Hicks, S. P., Okuwaki, R., Steinberg, A., Rychert, C. A., Harmon, N., Abercrombie, R. E., Bogiatzis, P., Schlaphorst, D., Zahradnik, J., Kendall, J. M., Yagi, Y., Shimizu, K., & Sudhaus, H. (2020). Back-propagating supershear rupture in the 2016 Mw 7.1 Romanche transform fault earthquake. Nature Geoscience. https://doi.org/10.1038/s41561-020-0619-9
Kohler, M. D., Hafner, K., Park, J., Irving, J. C. E., Caplan‐Auerbach, J., Collins, J., Berger, J., Tréhu, A. M., Romanowicz, B., & Woodward, R. L. (2020). A Plan for a Long‐Term, Automated, Broadband Seismic Monitoring Network on the Global Seafloor. Seismological Research Letters, 91(3), 1343–1355. https://doi.org/10.1785/0220190123
Laske, G. (2021). Observations of Earth’s Normal Modes on Broadband Ocean Bottom Seismometers [Original Research. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.679958
Laske, G., & Widmer-Schnidrig, R. (2015). 1.04 - Theory and Observations: Normal Mode and Surface Wave Observations. In G. Schubert (Ed.), Treatise on Geophysics (Second, pp. 117–167). Elsevier. https://doi.org/10.1016/B978-0-444-53802-4.00003-8
Leptokaropoulos, K., Harmon, N., Hicks, S. P., Rychert, C. A., Schlaphorst, D., & Kendall, J. M. (2021). Tidal Triggering of Microseismicity at the Equatorial Mid-Atlantic Ridge, Inferred From the PI-LAB Experiment. Journal of Geophysical Research: Solid Earth, 126(9), 2021 022251. https://doi.org/10.1029/2021JB022251
Leptokaropoulos, K., Rychert, C. A., Harmon, N., & Kendall, J.-M. (2022). Seismicity properties of the Chain Transform Fault inferred using data from the PI-LAB experiment. Earth and Space Science Open Archive, 35. https://doi.org/10.1002/essoar.10511418.1
Lin, P., Gaherty, J. B., Jin, G., Collins, J., Lizarralde, D., Evans, R. L., & Hirth, G. (2016). High-resolution seismic constraints on flow dynamics in the ocean asthenosphere. Nature, 535, 538–541. https://doi.org/10.1038/nature18012
Masters, G., Jordan, T. H., Silver, P. G., & Gilbert, F. (1982). Aspherical Earth structure from fundamental spheroidal-mode data. Nature, 298(5875), 609–613. https://doi.org/10.1038/298609a0
Masters, G., Laske, G., Bolton, H., & Dziewonski, A. (2000). The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: Implications for chemical and thermal structure. Washington DC American Geophysical Union Geophysical Monograph Series, 117, 63–87. https://doi.org/10.1029/GM117p0063
Masters, T. G., & Widmer, R. (1995). Free Oscillations: Frequencies and Attenuations.
Mehouachi, F., & Singh, S. (2018). Water-rich sublithospheric melt channel in the equatorial Atlantic Ocean. Nat. Geosci, 11, 65–69. https://doi.org/10.1038/s41561-017-0034-z
Moulik, P., & Ekström, G. (2014). An anisotropic shear velocity model of the Earth’s mantle using normal modes, body waves, surface waves and long-period waveforms. Geophys. J. Int, 199(3), 1713–1738. https://doi.org/10.1093/gji/ggu356
Ritsema, J., Deuss, A., Heijst, H. J., & Woodhouse, J. H. (2011). S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophysical Journal International, 184(3), 1223–1236. https://doi.org/10.1111/j.1365-246X.2010.04884.x
Ritsema, J., Heijst, H. J. v, & Woodhouse, J. H. (1999). Complex shear wave velocity structure imaged beneath Africa and Iceland. Science, 286(5446), 1925–1928.
Rychert, C. A., Harmon, N., Constable, S., & Wang, S. G. (2020). The Nature of the Lithosphere-Asthenosphere Boundary. Journal of Geophysical Research-Solid Earth, 125(10).
Rychert, C. A., Kendall, J. M., & Harmon, N. (2016). Passive Imaging of the Lithosphere-Asthenosphere Boundary. https://doi.org/10.7914/SN/XS_2016
Rychert, C. A., Tharimena, S., Harmon, N., Wang, S., Constable, S., Kendall, J. M., Bogiatzis, P., Agius, M. R., & Schlaphorst, D. (2021). A dynamic lithosphere-asthenosphere boundary near the equatorial Mid-Atlantic Ridge. Earth and Planetary Science Letters, 566, 116949. https://doi.org/10.1016/j.epsl.2021.116949
Saikia, U., Rychert, C. A., Harmon, N., & Michael Kendall, J. (2021). Seismic Attenuation at the Equatorial Mid-Atlantic Ridge Constrained by Local Rayleigh Wave Analysis From the PI-LAB Experiment. Geochemistry, Geophysics, Geosystems, 22(12), 2021 010085. https://doi.org/10.1029/2021GC010085
Saikia, U., Rychert, C., Harmon, N., & Kendall, J. M. (2020). Sediment structure at the equatorial mid-atlantic ridge constrained by seafloor admittance using data from the PI-LAB experiment. Marine Geophysical Research, 41(1), 10 1007 11001-020-09402–0.
Saikia, U., Rychert, C., Harmon, N., & Kendall, J. M. (2021). Upper Mantle Anisotropic Shear Velocity Structure at the Equatorial Mid-Atlantic Ridge Constrained by Rayleigh Wave Group Velocity Analysis From the PI-LAB Experiment. Geochemistry, Geophysics, Geosystems, 22(3), 2020 009495. https://doi.org/10.1029/2020GC009495
Schlaphorst, D., Rychert, C., Harmon, N., Hicks, S., Bogiatzis, P., Kendall, J. M., & Abercrombie, R. (2022). Local seismicity around the Chain Transform Fault at the Mid-Atlantic Ridge from OBS observations. Earth and Space Science Open Archive, 38. https://doi.org/10.1002/essoar.10511147.1
Smith, M. F., & Masters, G. (1989). Aspherical structure constraints from free oscillation frequency and attenuation measurements. Journal of Geophysical Research: Solid Earth, 94(B2), 1953–1976. https://doi.org/10.1029/JB094iB02p01953
Stephen, R. A., Spiess, F. N., Collins, J. A., Hildebrand, J. A., Orcutt, J. A., Peal, K. R., Vernon, F. L., & Wooding, F. B. (2003). Ocean Seismic Network Pilot Experiment. Geochemistry, Geophysics, Geosystems, 4(10). https://doi.org/10.1029/2002GC000485
Wang, S. G., Constable, S., Reyes-Ortega, V., & Rychert, C. A. (2019). A newly distinguished marine magnetotelluric coast effect sensitive to the lithosphere-asthenosphere boundary. Geophys. J. Int, 218(2), 978–987. https://doi.org/10.1093/gji/ggz202
Wang, S. G., Constable, S., Rychert, C. A., & Harmon, N. (2020). A Lithosphere-Asthenosphere Boundary and Partial Melt Estimated Using Marine Magnetotelluric Data at the Central Middle Atlantic Ridge. Geochemistry Geophysics Geosystems, 21(9). https://doi.org/10.1029/2020GC009177
Webb, S. C., & Crawford, W. C. (1999). Long-period seafloor seismology and deformation under ocean waves. Bull. Seis. Soc. Am, 89(6), 1535–1542.
Wolfe, C., Solomon, S., Laske, G., Collins, J. A., Detrick, R., Orcutt, J. A., Bercovici, D., & Hauri, E. (2009). Mantle shear-wave velocity structure beneath the Hawaiian hotspot. Science, 326, 1388–1390.
Woodhouse, J. H., & Dziewonski, A. M. (1984). Mapping the upper mantle: Three-dimensional modeling of earth structure by inversion of seismic waveforms. Journal of Geophysical Research: Solid Earth, 89(B7), 5953–5986. https://doi.org/10.1029/JB089iB07p05953
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Nicholas Harmon, Gabi Laske, Wayne Crawford, Catherine Rychert
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Natural Environment Research Council
Grant numbers NE/M003507/1 -
European Research Council
Grant numbers GA 638665 -
National Science Foundation
Grant numbers OCE-1830959