Breaking the Cycle: Short Recurrence and Overshoot of an M9-class Kamchatka Earthquake

Authors

  • Yuji Yagi University of Tsukuba
  • Yukitoshi Fukahata Disaster Prevention Research Institute, Kyoto University https://orcid.org/0000-0002-1009-7366
  • Ryo Okuwaki Institute of Life and Environmental Sciences, University of Tsukuba https://orcid.org/0000-0001-7149-4763
  • Tomohiro Takagawa Tsunami and Storm Surge Research Group, Port and Airport Research Institute, National Institute of Maritime, Port and Aviation Technology https://orcid.org/0000-0002-2783-5951
  • Shinji Toda International Research Institute of Disaster Science (IRIDeS), Tohoku University

DOI:

https://doi.org/10.26443/seismica.v4i2.2012

Keywords:

Earthquake rupture process, Earthquake Cycle

Abstract

M9-class megathrust earthquakes in subduction zones are generally thought to release slip deficits on the plate interface accumulated over centuries. However, the 2025 Kamchatka earthquake (Mw 8.8-8.9) ruptured nearly the same area as the 1952 Mw 9.0 event, as shown by the aftershock distribution. This unusually short recurrence interval challenges conventional seismic-cycle models. Using a cutting-edge source inversion technique, we analyze seismic data to estimate the spatiotemporal slip-rate evolution of the 2025 event. The results show that the 2025 rupture involved fault slips exceeding 9 m across a broad region from southern Kamchatka to the northern Kuril Islands, which is significantly greater than the plate convergence of about 6 m since 1952, matching the large-slip area of the 1952 event. Slip rates in the large-slip area accelerated twice, probably due to dynamic stress perturbations and complex frictional behaviour, and were followed by low-angle normal-faulting aftershocks suggesting dynamic overshoot. The results indicate that the 2025 earthquake released a substantial amount of the slip deficit that had not been released during the 1952 event. Therefore, the residual strains that remain after a great earthqauke and are not considered in current hazard forecasting can lead to shorter recurrence. This finding offers important clues to how great earthquakes release slip deficits and may help develop more physically based long-term forecasts.

References

Akaike, H. (1980). Likelihood and the Bayes procedure. Trab. Estad. Y Investig. Oper., 31(1), 143–166. https://doi.org/10.1007/BF02888350

Albuquerque Seismological Laboratory (ASL)/USGS. (1992). New China Digital Seismograph Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/IC

Albuquerque Seismological Laboratory (ASL)/USGS. (2006). Caribbean Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/CU

Albuquerque Seismological Laboratory/USGS. (1988). Global Seismograph Network (GSN - IRIS/USGS). International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/IU

Baba, T., Allgeyer, S., Hossen, J., Cummins, P. R., Tsushima, H., Imai, K., Yamashita, K., & Kato, T. (2017). Accurate numerical simulation of the far-field tsunami caused by the 2011 Tohoku earthquake, including the effects of Boussinesq dispersion, seawater density stratification, elastic loading, and gravitational potential change. Ocean Model., 111, 46–54. https://doi.org/10.1016/j.ocemod.2017.01.002

Berryman, K. R., Cochran, U. A., Clark, K. J., Biasi, G. P., Langridge, R. M., & Villamor, P. (2012). Major Earthquakes Occur Regularly on an Isolated Plate Boundary Fault. Science (80-. )., 336(6089), 1690–1693. https://doi.org/10.1126/science.1218959

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismol. Res. Lett., 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530

Bilek, S. L., & Lay, T. (2018). Subduction zone megathrust earthquakes. Geosphere, 14(4), 1468–1500. https://doi.org/10.1130/GES01608.1

Bürgmann, R., Kogan, M. G., Steblov, G. M., Hilley, G., Levin, V. E., & Apel, E. (2005). Interseismic coupling and asperity distribution along the Kamchatka subduction zone. J. Geophys. Res. Solid Earth, 110(B7), 1–17. https://doi.org/10.1029/2005JB003648

California Institute of Technology and United States Geological Survey Pasadena. (1926). Southern California Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/CI

Crameri, F. (2023). Scientific colour maps. Zenodo. https://doi.org/10.5281/zenodo.8409685

Crotwell, H. P., Owens, T. J., & Ritsema, J. (1999). The TauP Toolkit: Flexible Seismic Travel-time and Ray-path Utilities. Seismol. Res. Lett., 70(2), 154–160. https://doi.org/10.1785/gssrl.70.2.154

DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x

Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., & Shimamoto, T. (2006). Natural and Experimental Evidence of Melt Lubrication of Faults During Earthquakes. Science (80-. )., 311(5761), 647–649. https://doi.org/10.1126/science.1121012

Dziewonski, A. M., Chou, T.-A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. Solid Earth, 86(B4), 2825–2852. https://doi.org/10.1029/JB086iB04p02825

Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter., 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002

Flanders Marine Institute (VLIZ); Intergovernmental Oceanographic Commission (IOC). (2021). Sea level station monitoring facility. In VLIZ. https://doi.org/10.14284/482

Fukushima, Y., Toda, S., Miura, S., Ishimura, D., Fukuda, J., Demachi, T., & Tachibana, K. (2018). Extremely early recurrence of intraplate fault rupture following the Tohoku-Oki earthquake. Nat. Geosci., 11(10), 777–781. https://doi.org/10.1038/s41561-018-0201-x

Gabriel, A. ‐A., Ampuero, J. ‐P., Dalguer, L. A., & Mai, P. M. (2012). The transition of dynamic rupture styles in elastic media under velocity‐weakening friction. J. Geophys. Res. Solid Earth, 117(B9), 1–20. https://doi.org/10.1029/2012JB009468

Gabuchian, V., Rosakis, A. J., Bhat, H. S., Madariaga, R., & Kanamori, H. (2017). Experimental evidence that thrust earthquake ruptures might open faults. Nature, 545(7654), 336–339. https://doi.org/10.1038/nature22045

Gasperini, P., & Vannucci, G. (2003). FPSPACK: a package of FORTRAN subroutines to manage earthquake focal mechanism data. Comput. Geosci., 29(7), 893–901. https://doi.org/10.1016/S0098-3004(03)00096-7

GEBCO Compilation Group. (2025). GEBCO 2025 Grid. https://doi.org/10.5285/37c52e96-24ea-67ce-e063-7086abc05f29

GEOFON Data Centre. (1993). GEOFON Seismic Network. Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.14470/TR560404

Goda, K., & De Risi, R. (2024). Time-dependent probabilistic tsunami risk assessment: application to Tofino, British Columbia, Canada, subjected to Cascadia subduction earthquakes. Npj Nat. Hazards, 1(1), 7. https://doi.org/10.1038/s44304-024-00006-x

Goldfinger, C., Ikeda, Y., Yeats, R. S., & Ren, J. (2013). Superquakes and Supercycles. Seismol. Res. Lett., 84(1), 24–32. https://doi.org/10.1785/0220110135

Goldsby, D. L., & Tullis, T. E. (2011). Flash Heating Leads to Low Frictional Strength of Crustal Rocks at Earthquake Slip Rates. Science (80-. )., 334(6053), 216–218. https://doi.org/10.1126/science.1207902

Hashimoto, M. (2022). Is the Long-Term Probability of the Occurrence of Large Earthquakes along the Nankai Trough Inflated?—Scientific Review. Seismol. Res. Lett., 93(4), 2311–2319. https://doi.org/10.1785/0220210152

Heimann, S., Kriegerowski, M., Isken, M., Cesca, S., Daout, S., Grigoli, F., Juretzek, C., Megies, T., Nooshiri, N., Steinberg, A., Sudhaus, H., & Vasyura-Bathke, H. (2017). Pyrocko - An open-source seismology toolbox and library. GFZ Data Services. https://doi.org/10.5880/GFZ.2.1.2017.001

Hong Kong Observatory. (2009). Hong Kong Seismograph Network. http://www.hko.gov.hk/gts/equake/sp_seismo_network_intro_e.htm

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng., 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Ide, S., Baltay, A., & Beroza, G. C. (2011). Shallow Dynamic Overshoot and Energetic Deep Rupture in the 2011 M w 9.0 Tohoku-Oki Earthquake. Science (80-. )., 332(6036), 1426–1429. https://doi.org/10.1126/science.1207020

Inouye, W. (1953). Report on the investigation of the Kamchatka earthquake of November 1952 (in Japanese). Q. J. Seismol., 18, 5–48. https://www.jma.go.jp/jma/kishou/books/kenshin/vol18p005.pdf

Institut De Physique Du Globe De Paris (IPGP), & Ecole Et Observatoire Des Sciences De La Terre De Strasbourg (EOST). (1982). GEOSCOPE, French Global Network of broad band seismic stations. Institut de physique du globe de Paris (IPGP), Université de Paris. https://doi.org/10.18715/GEOSCOPE.G

Ishibashi, K. (2004). Status of historical seismology in Japan. Ann. Geophys., 47(2–3), 339–368. https://doi.org/10.4401/ag-3305

Johnson, J. M., & Satake, K. (1999). Asperity Distribution of the 1952 Great Kamchatka Earthquake and its Relation to Future Earthquake Potential in Kamchatka. Pure Appl. Geophys., 154(3–4), 541–553. https://doi.org/10.1007/s000240050243

Kagan, Y. Y., & Jackson, D. D. (1999). Worldwide doublets of large shallow earthquakes. Bull. Seismol. Soc. Am., 89(5), 1147–1155. https://doi.org/10.1785/BSSA0890051147

Kanamori, H. (1976). Re-examination of the earth’s free oxcillations excited by the Kamchatka earthquake of November 4, 1952. Phys. Earth Planet. Inter., 11(3), 216–226. https://doi.org/10.1016/0031-9201(76)90066-2

Kennett, B. L. N., Engdahl, E. R., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int., 122(1), 108–124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x

Kikuchi, M., & Kanamori, H. (1991). Inversion of complex body waves-III. Bull. Seism. Soc. Am., 81(6), 2335–2350. https://doi.org/10.1785/BSSA0810062335

King, G. C. P., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bull. Seism. Soc. Am., 84(3), 935–953. https://doi.org/10.1785/BSSA0840030935

KNMI. (1993). Netherlands Seismic and Acoustic Network. Royal Netherlands Meteorological Institute (KNMI). https://doi.org/10.21944/E970FD34-23B9-3411-B366-E4F72877D2C5

Laske, G., Masters, T. G., Ma, Z., & Pasyanos, M. (2013). Update on CRUST1.0 - A 1-degree Global Model of Earth’s Crust. Https://Igppweb.Ucsd.Edu/ Gabi/Crust1.Html, Geophys. Res. Abstr. 15, Abstr. EGU2013-2658, 15, Abstract EGU2013-2658.

MacInnes, B. T., Weiss, R., Bourgeois, J., & Pinegina, T. K. (2010). Slip Distribution of the 1952 Kamchatka Great Earthquake Based on Near-Field Tsunami Deposits and Historical Records. Bull. Seismol. Soc. Am., 100(4), 1695–1709. https://doi.org/10.1785/0120090376

McCaffrey, R. (2008). Global frequency of magnitude 9 earthquakes. Geology, 36(3), 263–266. https://doi.org/10.1130/G24402A.1

Met Office. (2015). Cartopy: a cartographic python library with a Matplotlib interface. https://doi.org/10.5281/zenodo.1182735

Montagner, J.-P., & Kennett, B. L. N. (1996). How to reconcile body-wave and normal-mode reference earth models. Geophys. J. Int., 125(1), 229–248. https://doi.org/10.1111/j.1365-246X.1996.tb06548.x

Natural Resources Canada. (1975). Canadian National Seismograph Network. Natural Resources Canada. https://doi.org/10.7914/SN/CN

Nizkous, I., Kissling, E., Sanina, I., Gontovaya, L., & Levina, V. (2007). Correlation of Kamchatka lithosphere velocity anomalies with subduction processes. In Geophys. Monogr. Ser. (Vol. 172, pp. 97–106). https://doi.org/10.1029/172GM09

NOAA National Centers for Environmental Information; NOAA Center for Tsunami Research. (2017). Archival and Discovery of November 4, 1952 Tsunami Event on Marigrams. In NOAA Natl. Centers Environ. Inf. https://doi.org/10.7289/V55H7DGQ

NOAA PMEL Center for Tsunami Research. (2025). Kamchatka Tsunami, July 29, 2025 Main Event Page. In NOAA NCTR Res. Prod. https://nctr.pmel.noaa.gov/kamchatka20250729/

Northern California Earthquake Data Center. (2014). Berkeley Digital Seismic Network (BDSN). Northern California Earthquake Data Center. https://doi.org/10.7932/BDSN

Oglesby, D. D., Archuleta, R. J., & Nielsen, S. B. (1998). Earthquakes on Dipping Faults: The Effects of Broken Symmetry. Science (80-. )., 280(5366), 1055–1059. https://doi.org/10.1126/science.280.5366.1055

Oglesby, D. D., & Day, S. M. (2004). Fault Geometry and the Dynamics of the 1999 Chi-Chi (Taiwan) Earthquake. Bull. Seismol. Soc. Am., 91(5), 1099–1111. https://doi.org/10.1785/0120000714

Ohnaka, M., & Yamashita, T. (1989). A cohesive zone model for dynamic shear faulting based on experimentally inferred constitutive relation and strong motion source parameters. J. Geophys. Res. Solid Earth, 94(B4), 4089–4104. https://doi.org/10.1029/JB094iB04p04089

Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am., 82(2), 1018–1040. https://doi.org/10.1785/BSSA0820021018

Okal, E. A. (1992). Use of the mantle magnitudeM m for the reassessment of the moment of historical earthquakes. Pure Appl. Geophys., 139(1), 17–57. https://doi.org/10.1007/BF00876825

Pinegina, T. K., Bourgeois, J., Bazanova, L. I., Zelenin, E. A., Krasheninnikov, S. P., & Portnyagin, M. V. (2020). Coseismic coastal subsidence associated with unusually wide rupture of prehistoric earthquakes on the Kamchatka subduction zone: A record in buried erosional scarps and tsunami deposits. Quat. Sci. Rev., 233, 106171. https://doi.org/10.1016/j.quascirev.2020.106171

Ragon, T., Sladen, A., & Simons, M. (2018). Accounting for uncertain fault geometry in earthquake source inversions - I: Theory and simplified application. Geophys. J. Int., 214(2), 1174–1190. https://doi.org/10.1093/gji/ggy187

Reid, H. F. (1910). The mechanics of the earthquake, the California earthquake of April 18, 1906. Rep. State Earthq. Investig. Comm., II, 1–192.

Rousset, B., Campillo, M., Shapiro, N. M., Walpersdorf, A., Titkov, N., & Chebrov, D. V. (2023). The 2013 Slab‐Wide Kamchatka Earthquake Sequence. Geophys. Res. Lett., 50(4), 1–10. https://doi.org/10.1029/2022GL101856

Rubino, V., Lapusta, N., & Rosakis, A. J. (2022). Intermittent lab earthquakes in dynamically weakening fault gouge. Nature, 606(7916), 922–929. https://doi.org/10.1038/s41586-022-04749-3

Ruppert, N. A., Lees, J. M., & Kozyreva, N. P. (2007). Seismicity, earthquakes and structure along the Alaska-Aleutian and Kamchatka-Kurile Subduction Zones: A review. In Volcanism Subduction Kamchatka Reg. (pp. 129–144). https://doi.org/10.1029/172GM12

Salditch, L., Stein, S., Neely, J., Spencer, B. D., Brooks, E. M., Agnon, A., & Liu, M. (2020). Earthquake supercycles and Long-Term Fault Memory. Tectonophysics, 774(July 2019), 228289. https://doi.org/10.1016/j.tecto.2019.228289

Sato, D., Fukahata, Y., & Nozue, Y. (2022). Appropriate reduction of the posterior distribution in fully Bayesian inversions. Geophys. J. Int., 231(2), 950–981. https://doi.org/10.1093/gji/ggac231

Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391(6662), 37–42. https://doi.org/10.1038/34097

Scripps Institution of Oceanography. (1986). Global Seismograph Network - IRIS/IDA. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/II

Shimazaki, K., & Nakata, T. (1980). Time‐predictable recurrence model for large earthquakes. Geophys. Res. Lett., 7(4), 279–282. https://doi.org/10.1029/GL007i004p00279

Shimizu, K., Yagi, Y., Okuwaki, R., & Fukahata, Y. (2020). Development of an inversion method to extract information on fault geometry from teleseismic data. Geophysical Journal International, 220(2), 1055–1065. https://doi.org/10.1093/gji/ggz496

Sieh, K., Natawidjaja, D. H., Meltzner, A. J., Shen, C.-C., Cheng, H., Li, K.-S., Suwargadi, B. W., Galetzka, J., Philibosian, B., & Edwards, R. L. (2008). Earthquake Supercycles Inferred from Sea-Level Changes Recorded in the Corals of West Sumatra. Science (80-. )., 322(5908), 1674–1678. https://doi.org/10.1126/science.1163589

Spudich, P., Cirella, A., Scognamiglio, L., & Tinti, E. (2019). Variability in synthetic earthquake ground motions caused by source variability and errors in wave propagation models. Geophys. J. Int., 219(1), 346–372. https://doi.org/10.1093/gji/ggz275

Stein, R. S. (1999). The role of stress transfer in earthquake occurrence. Nature, 402(6762), 605–609. https://doi.org/10.1038/45144

Stein, R. S., & Bird, P. (2024). Why Do Great Continental Transform Earthquakes Nucleate on Branch Faults? Seismol. Res. Lett., 6, 3406–3415. https://doi.org/10.1785/0220240175

Sykes, L. R., & Menke, W. (2006). Repeat Times of Large Earthquakes: Implications for Earthquake Mechanics and Long-Term Prediction. Bull. Seismol. Soc. Am., 96(5), 1569–1596. https://doi.org/10.1785/0120050083

Takagawa, T. (2024). tomographyyy/tandem: major release v.1.0.0 (v1.0.0) [Software]. Zenodo. https://doi.org/10.5281/zenodo.10995292

Takagawa, T., Allgeyer, S., & Cummins, P. (2024). Adjoint Synthesis for Trans-Oceanic Tsunami Waveforms and Simultaneous Inversion of Fault Geometry and Slip Distribution. J. Geophys. Res. Solid Earth, 129(6), e2024JB028750. https://doi.org/10.1029/2024JB028750

Taufiqurrahman, T., Gabriel, A.-A., Li, D., Ulrich, T., Li, B., Carena, S., Verdecchia, A., & Gallovič, F. (2023). Dynamics, interactions and delays of the 2019 Ridgecrest rupture sequence. Nature, 618(7964), 308–315. https://doi.org/10.1038/s41586-023-05985-x

Toppozada, T. R., Branum, D. M., Reichle, M. S., & Hallstrom, C. L. (2002). San Andreas Fault Zone, California: M >=5.5 Earthquake History. Bull. Seismol. Soc. Am., 92(7), 2555–2601. https://doi.org/10.1785/0120000614

Townend, J. (2006). What do faults feel? Observational constraints on the stresses acting on seismogenic faults. In Earthquakes Radiated Energy Phys. Faulting (pp. 313–327). https://doi.org/10.1029/170GM31

U.S. Geological Survey Earthquake Hazards Program. (2017). Advanced National Seismic System (ANSS) Comprehensive Catalog of Earthquake Events and Products. https://doi.org/10.5066/F7MS3QZH

Various Institutions. (1965). International Miscellaneous Stations. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/VEFQ-VH75

Wallace, R. E. (1987). Grouping and migration of surface faulting and variations in slip rates on faults in the Great Basin province. Bull. Seismol. Soc. Am., 77(3), 868–876. https://doi.org/10.1785/BSSA0770030868

Watada, S., Kusumoto, S., & Satake, K. (2014). Traveltime delay and initial phase reversal of distant tsunamis coupled with the self‐gravitating elastic Earth. J. Geophys. Res. Solid Earth, 119(5), 4287–4310. https://doi.org/10.1002/2013JB010841

Weldon, R., Scharer, K., Fumal, T., & Biasi, G. (2004). Wrightwood and the earthquake cycle: What a long recurrence record tells us about how faults work. GSA Today, 14(9), 4. https://doi.org/10.1130/1052-5173(2004)014<4:WATECW>2.0.CO;2

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophys. Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019GC008515

Wibberley, C. A. J., & Shimamoto, T. (2005). Earthquake slip weakening and asperities explained by thermal pressurization. Nature, 436(7051), 689–692. https://doi.org/10.1038/nature03901

Wong, J. W. C., Fan, W., & Gabriel, A. A. (2024). A Quantitative Comparison and Validation of Finite-Fault Models: The 2011 Tohoku-Oki Earthquake. J. Geophys. Res. Solid Earth, 129(10). https://doi.org/10.1029/2024JB029212

Xu, S., Fukuyama, E., Yamashita, F., Kawakata, H., Mizoguchi, K., & Takizawa, S. (2023). Fault strength and rupture process controlled by fault surface topography. Nat. Geosci., 16(1), 94–100. https://doi.org/10.1038/s41561-022-01093-z

Yagi, Y., & Fukahata, Y. (2011a). Introduction of uncertainty of Green’s function into waveform inversion for seismic source processes. Geophysical Journal International, 186(2), 711–720. https://doi.org/10.1111/j.1365-246X.2011.05043.x

Yagi, Y., & Fukahata, Y. (2011b). Rupture process of the 2011 Tohoku-oki earthquake and absolute elastic strain release. Geophys. Res. Lett., 38(19), L19307. https://doi.org/10.1029/2011GL048701

Yagi, Y., Fukahata, Y., Okuwaki, R., Takagawa, T., & Toda, S. (2025). Archive of processed data and scripts for the source process analyses of the 2025 Kamchatka earthquake [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.17379117

Yamashita, S., Yagi, Y., Okuwaki, R., Shimizu, K., Agata, R., & Fukahata, Y. (2022). Potency density tensor inversion of complex body waveforms with time-adaptive smoothing constraint. Geophysical Journal International, 231(1), 91–107. https://doi.org/10.1093/gji/ggac181

Downloads

Published

2025-11-30

How to Cite

Yagi, Y., Fukahata, Y., Okuwaki, R., Takagawa, T., & Toda, S. (2025). Breaking the Cycle: Short Recurrence and Overshoot of an M9-class Kamchatka Earthquake. Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.2012

Issue

Section

Fast Reports

Funding data