Earthquake Relocations Illuminate Tectonics along the Bismarck Sea Seismic Lineation, Papua New Guinea
DOI:
https://doi.org/10.26443/seismica.v4i2.2041Abstract
The Bismarck Sea Seismic Lineation (BSSL) is a 1000-km-long band of shallow earthquakes that marks the boundaries between the North and South Bismarck Plates and the Manus Microplate, offshore Papua New Guinea. These tectonic boundaries comprise a series of transform faults separated by spreading ridges, and one extensional transform zone (ETZ). Since it was first identified in 1969, the deformation details of the faults along the BSSL have remained shrouded by the cloud of seismicity surrounding them. Here, we employ a recently published surface wave earthquake relocation algorithm (Howe etl al., 2019) to relocate events along the BSSL and the previously proposed Adelbert block boundary. These relocations show that left-lateral strike-slip seismicity concentrates narrowly along the known transform faults (the Schouten, Willaumez, Djaul, and Weitin) and the western ETZ. Several events that relocate to inside the Manus Microplate may represent distributed deformation by right-lateral bookshelf-style faulting. The spreading ridges are aseismic at our scale of observation, as previously suggested, but we identify clusters of strike-slip events at their terminations. The strike-slip events along the ETZ are at synthetic Riedel shear angles of \textasciitilde10° to those along the Willaumez transform. The earthquake relocations also show that the previously proposed SE boundary of the Adelbert block is not well defined or localized. We carefully selected the best quality relocated focal mechanisms to calculate new best-fit Euler poles for the transform segments. These calculations support earlier indications that the Schouten transform is not well fit by the same Euler pole as the other BSSL transforms, requiring internal deformation of the adjoining plates, for which we present additional evidence.
References
Abers, G., & McCaffrey, R. (1988). Active deformation in the New Guinea fold-and-thrust belt: Seismological evidence for strike-slip faulting and basement-involved thrusting. Journal of Geophysical Research: Solid Earth, 93(B11), 13332–13354. https://doi.org/10.1029/jb093ib11p13332
Albuquerque Seismological Laboratory/USGS. (1988). Global Seismograph Network (GSN - IRIS/USGS). International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/IU
Auzende, J.-M., Ishibashi, J.-I., Beaudoin, Y., Charlou, J.-L., Delteil, J., Donval, J.-P., Fouquet, Y., Gouillou, P., Ildefonse, B., Kimura, H., Nishio, Y., Radford-Knoery, J., & Ruellan, E. (2000). Rift Propagation and extensive off-axis volcanic and hydrothermal activity in the Manus Basin (Papua New Guinea): MANAUTE Cruise. International Ridge-Crest Research: Back Arc Basins, 9(2), 21–25.
Auzende, J.-M., Urabe, T., & Scientific Party. (1996). Cruise explores hydrothermal vents of the Manus Basin. Eos, Transactions American Geophysical Union, 77(26), 244–244. https://doi.org/10.1029/96eo00174
Barriga, F. J. A. S., Binns, R. A., Miller, D. J., & Herzig, P. (2007). Leg 193 synthesis: Anatomy of an active felsic-hosted hydrothermal system, eastern Manus Basin. In Proceedings of the Ocean Drilling Program. Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.193.2007
Benyshek, E. K., & Taylor, B. (2021). Tectonics of the Papua‐Woodlark Region. Geochemistry, Geophysics, Geosystems, 22(1). https://doi.org/10.1029/2020gc009209
Benyshek, E. K., Taylor, B., & Goodliffe, A. M. (2024). A Detailed Reconstruction of the Woodlark Basin. Geochemistry, Geophysics, Geosystems, 25(7). https://doi.org/10.1029/2023gc011410
Binns, R. A., & Scott, S. D. (1993). Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea. Economic Geology, 88(8), 2226–2236. https://doi.org/10.2113/gsecongeo.88.8.2226
Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3). https://doi.org/10.1029/2001gc000252
Boettcher, M. S., & Jordan, T. H. (2004). Earthquake scaling relations for mid‐ocean ridge transform faults. Journal of Geophysical Research: Solid Earth, 109(B12). https://doi.org/10.1029/2004jb003110
Both, R., Crook, K., Taylor, B., Brogan, S., Chappell, B., Frankel, E., Liu, L., Sinton, J., & Tiffin, D. (1986). Hydrothermal chimneys and associated fauna in the Manus Back‐Arc Basin, Papua New Guinea. Eos, Transactions American Geophysical Union, 67(21), 489–490. https://doi.org/10.1029/eo067i021p00489
Brooks, J. A., Connelly, J. B., Finlayson, D. M., & Wiebenga, W. A. (1971). St George’s Channel–Bismarck Sea Trough. Nature Physical Science, 229(7), 205–207. https://doi.org/10.1038/physci229205a0
Chen, K., Milliner, C., & Avouac, J. (2019). The Weitin Fault, Papua New Guinea, Ruptured Twice by Mw 8.0 and Mw 7.7 Earthquakes in 2000 and 2019. Geophysical Research Letters, 46(22), 12833–12840. https://doi.org/10.1029/2019gl084645
Cleveland, M. K., & Ammon, C. J. (2013). Precise relative earthquake location using surface waves. Journal of Geophysical Research: Solid Earth, 118(6), 2893–2904. https://doi.org/10.1002/jgrb.50146
Conder, J. A., & Wiens, D. A. (2011). Shallow seismicity and tectonics of the central and northern Lau Basin. Earth and Planetary Science Letters, 304(3–4), 538–546. https://doi.org/10.1016/j.epsl.2011.02.032
Connelly, J. B. (1974). A structural interpretation of magnetometer and seismic profiler records in the Bismarck Sea, Melanesian Archipelago. Journal of the Geological Society of Australia, 21(4), 459–469. https://doi.org/10.1080/00167617408728867
Connelly, J. B. (1976). Tectonic Development of the Bismarck Sea Based on Gravity and Magnetic Modelling. Geophysical Journal International, 46(1), 23–40. https://doi.org/10.1111/j.1365-246x.1976.tb01630.x
Cooper, P., & Taylor, B. (1987). Seismotectonics of New Guinea: A model for arc reversal following arc‐continent collision. Tectonics, 6(1), 53–67. https://doi.org/10.1029/tc006i001p00053
Crook, K. A. W., Lisitzin, A. P., & Borissova, I. A. (1997). Results and prospects from the joint USSR Australia USA PNG geological study of the Manus Basin during the 21st cruise of the R/V Akademik Mstislav Keldysh. Marine Geology Special Issue, 142(1/4), 1–210.
Denham, D. (1969). Distribution of earthquakes in the New Guinea-Solomon Islands Region. Journal of Geophysical Research, 74(17), 4290–4299. https://doi.org/10.1029/jb074i017p04290
Ding, X., Xu, S., Xie, Y., Van den Ende, M., Premus, J., & Ampuero, J.-P. (2023). The sharp turn: Backward rupture branching during the 2023 Mw 7.8 Kahramanmaraş (Türkiye) earthquake. Seismica, 2(3). https://doi.org/10.26443/seismica.v2i3.1083
Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7
Dziewonski, A. M., Chou, T. ‐A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86(B4), 2825–2852. https://doi.org/10.1029/jb086ib04p02825
EarthScope Consortium. (1986). Global Seismograph Network - II. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/II
Eguchi, T., Fujinawa, Y., & Ukawa, M. (1989). Microearthquakes and tectonics in an active back-arc basin: the Lau Basin. Physics of the Earth and Planetary Interiors, 56(3–4), 210–229. https://doi.org/10.1016/0031-9201(89)90158-1
Eguchi, T., Fujinawa, Y., Ukawa, M., & Bibot, L. (1986). Microearthquakes along the back-arc spreading system in the eastern Bismarck Sea. Geo-Marine Letters, 6(4), 235–240. https://doi.org/10.1007/bf02239585
Eguchi, T., Fujinawa, Y., Ukawa, M., & Bibot, L. (1989). Earthquakes associated with the back-arc opening in the eastern Bismarck Sea: activity, mechanisms, and tectonics. Physics of the Earth and Planetary Interiors, 56(3–4), 189–209. https://doi.org/10.1016/0031-9201(89)90157-x
Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002
GEBCO Bathymetric Compilation Group. (2023). The GEBCO_2023 Grid - a continuous terrain model of the global oceans and land. NERC EDS British Oceanographic Data Centre NOC. https://doi.org/10.5285/F98B053B-0CBC-6C23-E053-6C86ABC0AF7B
GEOFON Data Centre. (1993). GEOFON Seismic Network. GFZ Data Services. https://doi.org/10.14470/TR560404
Hall, R., & Spakman, W. (2002). Subducted slabs beneath the eastern Indonesia–Tonga region: insights from tomography. Earth and Planetary Science Letters, 201(2), 321–336. https://doi.org/10.1016/s0012-821x(02)00705-7
Hasterok, D., Halpin, J. A., Collins, A. S., Hand, M., Kreemer, C., Gard, M. G., & Glorie, S. (2022). New Maps of Global Geological Provinces and Tectonic Plates. Earth-Science Reviews, 231, 104069. https://doi.org/10.1016/j.earscirev.2022.104069
Heidarzadeh, M., Harada, T., Satake, K., Ishibe, T., & Takagawa, T. (2017). Tsunamis from strike-slip earthquakes in the Wharton Basin, northeast Indian Ocean: March 2016 Mw7.8 event and its relationship with the April 2012 Mw 8.6 event. Geophysical Journal International, 211(3), 1601–1612. https://doi.org/10.1093/gji/ggx395
Hohnen, P. D. (1970). Geology of New Ireland. Bureau of Mineral Resources Australia.
Howe, M., Ekström, G., & Nettles, M. (2019). Improving relative earthquake locations using surface-wave source corrections. Geophysical Journal International, 219(1), 297–312. https://doi.org/10.1093/gji/ggz291
Institut de physique du globe de Paris (IPGP) , & École et Observatoire des sciences de la Terre de Strasbourg (EOST). (1982). GEOSCOPE, French Global Network of broad band seismic stations. Institut de physique du globe de Paris, Université Paris Cité. https://doi.org/10.18715/GEOSCOPE.G
Johnson, R. W., Mutter, J. C., & Arculus, R. J. (1979). Origin of the Willaumez-Manus Rise, Papua New Guinea. Earth and Planetary Science Letters, 44(2), 247–260. https://doi.org/10.1016/0012-821x(79)90173-0
Johnson, R. W., Smith, I. E. M., & Taylor, S. R. (1978). Hot-spot volcanism in St. Andrew Strait, Papua New Guinea: Geochemistry of a bimodal rock suite (Vol. 3, pp. 55–69).
Johnson, T., & Molnar, P. (1972). Focal mechanisms and plate tectonics of the southwest Pacific. Journal of Geophysical Research, 77(26), 5000–5032. https://doi.org/10.1029/jb077i026p05000
Joseph, D., Taylor, B., Shor, A. N., & Yamazaki, T. (1993). The Nova-Canton Trough and the Late Cretaceous evolution of the central Pacific. In The Mesozoic Pacific: Geology, Tectonics, and Volcanism: A Volume in Memory of Sy Schlanger (pp. 171–185). American Geophysical Union. https://doi.org/10.1029/gm077p0171
Khodayar, M., Björnsson, S., Víkingsson, S., & Jónsdóttir, G. S. (2020). Unstable Rifts, a Leaky Transform Zone and a Microplate: Analogues from South Iceland. Open Journal of Geology, 10(4), 317–367. https://doi.org/10.4236/ojg.2020.104017
Koulali, A., Tregoning, P., McClusky, S., Stanaway, R., Wallace, L., & Lister, G. (2015). New Insights into the present-day kinematics of the central and western Papua New Guinea from GPS. Geophysical Journal International, 202(2), 993–1004. https://doi.org/10.1093/gji/ggv200
Ledeczi, A., Ekström, G., & Taylor, B. (2025). Earthquake Relocations Illuminate Tectonics along the Bismarck Sea Seismic Lineation, Papua New Guinea. Zenodo. https://doi.org/10.5281/ZENODO.14941399
Lee, S.-M., & Ruellan, E. (2006). Tectonic and magmatic evolution of the Bismarck Sea, Papua New Guinea: Review and new synthesis. In Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions (pp. 263–286). American Geophysical Union. https://doi.org/10.1029/166gm14
Liu, Y., McGuire, J. J., & Behn, M. D. (2012). Frictional behavior of oceanic transform faults and its influence on earthquake characteristics. Journal of Geophysical Research: Solid Earth, 117(B4). https://doi.org/10.1029/2011jb009025
Liu, Y.-K., Ross, Z. E., Cochran, E. S., & Lapusta, N. (2022). A unified perspective of seismicity and fault coupling along the San Andreas Fault. Science Advances, 8(8). https://doi.org/10.1126/sciadv.abk1167
Llanes, P., Silver, E., Day, S., & Hoffman, G. (2009). Interactions between a transform fault and arc volcanism in the Bismarck Sea, Papua New Guinea. Geochemistry, Geophysics, Geosystems, 10(6). https://doi.org/10.1029/2009gc002430
Macpherson, C. G., Hilton, D. R., Sinton, J. M., Poreda, R. J., & Craig, H. (1998). High 3He/4He ratios in the Manus backarc basin: Implications for mantle mixing and the origin of plumes in the western Pacific Ocean. Geology, 26(11), 1007. https://doi.org/10.1130/0091-7613(1998)026<1007:hhhrit>2.3.co;2
Martinez, F., & Taylor, B. (1996). Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus Basin. Marine Geophysical Researches, 18(2–4), 203–224. https://doi.org/10.1007/bf00286078
Martinez, F., & Taylor, B. (2003). Controls on back-arc crustal accretion: insights from the Lau, Manus and Mariana basins. Geological Society, London, Special Publications, 219(1), 19–54. https://doi.org/10.1144/gsl.sp.2003.219.01.02
McClusky, S., Mobbs, K., Stolz, A., Barsby, D., Loratung, W., Lambeck, K., & Morgan, P. (1994). The Papua New Guinea Satellite Crustal Motion Surveys. Australian Surveyor, 39(3), 194–214. https://doi.org/10.1080/00050328.1994.10558445
MedNet Project Partner Institutions. (1990). Mediterranean Very Broadband Seismographic Network (MedNet). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/SD/FBBBTDTD6Q
Pollitz, F. F., Stein, R. S., Sevilgen, V., & Bürgmann, R. (2012). The 11 April 2012 east Indian Ocean earthquake triggered large aftershocks worldwide. Nature, 490(7419), 250–253. https://doi.org/10.1038/nature11504
Ripper, I. D. (1975a). Earthquake focal mechanisms in the New Guinea/Solomon Islands region (Vol. 178).
Ripper, I. D. (1975b). Part 6. Present plate boundary seismic, volcanic and kinematic processes: Seismicity and earthquake focal mechanisms in the New Guinea Solomon Islands region. Exploration Geophysics, 6(2), 80–81. https://doi.org/10.1071/eg975080
Sinton, J., Liu, L., Taylor, B., & Chappell, B. (1986). Petrology, magmatic budget and tectonic setting of Manus back-arc basin lavas. EOS (Trans. Am. Geophys. Union), 67, 377–378.
Sinton, J. M. (2003). Magma Genesis and Mantle Heterogeneity in the Manus Back-Arc Basin, Papua New Guinea. Journal of Petrology, 44(1), 159–195. https://doi.org/10.1093/petrology/44.1.159
Smith, G. P., & Ekström, G. (1996). Improving teleseismic event locations using a three-dimensional Earth model. Bulletin of the Seismological Society of America, 86(3), 788–796. https://doi.org/10.1785/bssa0860030788
Taylor, B. (1975). The tectonics of the Bismarck Sea region [B.Sc. Honors Thesis]. University of Sydney.
Taylor, B. (1979). Bismarck Sea: Evolution of a back-arc basin. Geology, 7(4), 171. https://doi.org/10.1130/0091-7613(1979)7<171:bseoab>2.0.co;2
Taylor, B., & Benyshek, E. K. (2024). Oceanic Plateau and Spreading Ridge Subduction Accompanying Arc Reversal in the Solomon Islands. Geochemistry, Geophysics, Geosystems, 25(1). https://doi.org/10.1029/2023gc011270
Taylor, B., Crook, K. A. W., Sinton, J. M., & Petersen, L. (1991). Manus Basin, Papua New Guinea, SeaMARC II Sidescan Sonar Imagery (Sheets 1-3) and Bathymetry (Sheets 4-6), 1:250,000. In Pacific Seafloor Atlas (pp. 1–3). Hawaii Institute of Geophysics.
Taylor, B., Crook, K., & Sinton, J. (1986). Fast Spreading and Sulfide Deposition in Manus Back-Arc Basin. AAPG Bulletin, 70.
Taylor, B., Crook, K., & Sinton, J. (1994). Extensional transform zones and oblique spreading centers. Journal of Geophysical Research: Solid Earth, 99(B10), 19707–19718. https://doi.org/10.1029/94jb01662
Tregoning, P. (2002). Plate kinematics in the western Pacific derived from geodetic observations. Journal of Geophysical Research: Solid Earth, 107(B1). https://doi.org/10.1029/2001jb000406
Tregoning, P., Jackson, R. J., McQueen, H., Lambeck, K., Stevens, C., Little, R. P., Curley, R., & Rosa, R. (1999). Motion of the South Bismarck Plate, Papua New Guinea. Geophysical Research Letters, 26(23), 3517–3520.
Tufar, W. (1990). Modern Hydrothermal Activity, Formation of Complex Massive Sulfide Deposits and Associated Vent Communities in the Manus Back-Arc Basin (Bismarck Sea, Papua New Guinea. Mitt Ōsterr. Geol. Ges, 82.
Wallace, L. M., McCaffrey, R., Beavan, J., & Ellis, S. (2005). Rapid microplate rotations and backarc rifting at the transition between collision and subduction. Geology, 33(11), 857. https://doi.org/10.1130/g21834.1
Wallace, L. M., Stevens, C., Silver, E., McCaffrey, R., Loratung, W., Hasiata, S., Stanaway, R., Curley, R., Rosa, R., & Taugaloidi, J. (2004). GPS and seismological constraints on active tectonics and arc‐continent collision in Papua New Guinea: Implications for mechanics of microplate rotations in a plate boundary zone. Journal of Geophysical Research: Solid Earth, 109(B5). https://doi.org/10.1029/2003jb002481
Wei, M., He, L., & Smith-Konter, B. (2024). A model of the earthquake cycle along the Gofar oceanic transform faults. Seismica, 3(2). https://doi.org/10.26443/seismica.v3i2.1382
Wiseman, K., & Bürgmann, R. (2012). Stress triggering of the great Indian Ocean strike‐slip earthquakes in a diffuse plate boundary zone. Geophysical Research Letters, 39(22). https://doi.org/10.1029/2012gl053954
Zellmer, K. E., & Taylor, B. (2001). A three‐plate kinematic model for Lau Basin opening. Geochemistry, Geophysics, Geosystems, 2(5). https://doi.org/10.1029/2000gc000106
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anna Ledeczi, Göran Ekström, Brian Taylor

This work is licensed under a Creative Commons Attribution 4.0 International License.

