Ocean Surface Gravity Wave Excitation of Flexural Gravity and Extensional Lamb Waves in Ice Shelves
DOI:
https://doi.org/10.26443/seismica.v2i1.213Abstract
Flexure and extension of ice shelves in response to incident ocean surface gravity waves have been linked to iceberg calving, rift growth, and even disintegration of ice shelves. Most modeling studies utilize a plate bending model for the ice, focusing exclusively on flexural gravity waves. Ross Ice shelf seismic data shows not only flexural gravity waves, with dominantly vertical displacements, but also extensional Lamb waves, which propagate much faster with dominantly horizontal displacements. Our objective is to model the full-wave response of ice shelves, including ocean compressibility, ice elasticity, and gravity. Our model is a 2D vertical cross-section of the ice shelf and sub-shelf ocean cavity. We quantify the frequency-dependent excitation of flexural gravity and extensional Lamb waves and provide a quantitative theory for extensional Lamb wave generation by the horizontal force imparted by pressure changes on the vertical ice shelf edge exerted by gravity waves. Our model predicts a horizontal to vertical displacement ratio that increases with decreasing frequency, with ratio equal to unity at ~0.001 Hz. Furthermore, in the very long period band (<0.003 Hz), tilt from flexural gravity waves provides an order of magnitude larger contribution to seismometer horizontal components than horizontal displacements from extensional Lamb waves.
References
Achenbach, J. D. (1973). Wave propagation in elastic solids. In ISBN-13. Elsevier.
Achenbach, J. D. (2003). Reciprocity in elastodynamics. Cambridge University Press.
Achenbach, Jan D. (2003). Laser excitation of surface wave motion. Journal of the Mechanics and Physics of Solids, 51(11–12), 1885–1902. https://doi.org/https://doi.org/10.1016/j.jmps.2003.09.021
Aki, K., & Richards, P. G. (2002). Quantitative Seismology. University Science Books.
Aster, R. C., Lipovsky, B. P., Cole, H. M., Bromirski, P. D., Gerstoft, P., Nyblade, A., Wiens, D. A., & Stephen, R. (2021). Swell-triggered seismicity at the near-front damage zone of the Ross Ice Shelf. Seismological Research Letters, 92(5), 2768–2792. https://doi.org/https://doi.org/10.1785/0220200478
Banwell, A. F., MacAyeal, D. R., & Sergienko, O. V. (2013). Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes. Geophysical Research Letters, 40(22), 5872–5876. https://doi.org/https://doi.org/10.1002/2013GL057694
Banwell, A. F., Willis, I. C., Macdonald, G. J., Goodsell, B., Mayer, D. P., Powell, A., & Macayeal, D. R. (2017). Calving and rifting on the McMurdo ice shelf, Antarctica. Annals of Glaciology, 58(75pt1), 78–87. https://doi.org/https://doi.org/10.1017/aog.2017.12
Biot, M. A. (1952). The interaction of Rayleigh and Stoneley waves in the ocean bottom. Bulletin of the Seismological Society of America, 42(1), 81–93. https://doi.org/https://doi.org/10.1785/BSSA0420010081
Bromirski, P. D., Chen, Z., Stephen, R. A., Gerstoft, P., Arcas, D., Diez, A., Aster, R. C., Wiens, D. A., & Nyblade, A. (2017). Tsunami and infragravity waves impacting Antarctic ice shelves. Journal of Geophysical Research: Oceans, 122(7), 5786–5801. https://doi.org/https://doi.org/10.1002/2017JC012913
Bromirski, P. D., Sergienko, O. V., & MacAyeal, D. R. (2010). Transoceanic infragravity waves impacting Antarctic ice shelves. Geophysical Research Letters, 37(2). https://doi.org/https://doi.org/10.1029/2009GL041488
Bromwich, D. H., & Nicolas, J. P. (2010). Ice-sheet uncertainty. Nature Geoscience, 3(9), 596–597. https://doi.org/https://doi.org/10.1038/ngeo946
Brunt, K. M., Okal, E. A., & MacAYEAL, D. R. (2011). Antarctic ice-shelf calving triggered by the Honshu (Japan) earthquake and tsunami, March 2011. Journal of Glaciology, 57(205), 785–788. https://doi.org/DOI: https://doi.org/10.3189/002214311798043681
Chen, Z, Bromirski, P., Gerstoft, P., Stephen, R., Lee, W. S., Yun, S., Olinger, S., Aster, R., Wiens, D., & Nyblade, A. (2019). Ross Ice Shelf icequakes associated with ocean gravity wave activity. Geophysical Research Letters, 46(15), 8893–8902. https://doi.org/https://doi.org/10.1029/2019GL084123
Chen, Zhao, Bromirski, P. D., Gerstoft, P., Stephen, R. A., Wiens, D. A., Aster, R. C., & Nyblade, A. A. (2018). Ocean-excited plate waves in the Ross and Pine Island Glacier ice shelves. Journal of Glaciology, 64(247), 730–744. https://doi.org/https://doi.org/10.1017/jog.2018.66
De Angelis, H., & Skvarca, P. (2003). Glacier surge after ice shelf collapse. Science, 299(5612), 1560–1562. https://doi.org/10.1126/science.1077987
Diez, A., Bromirski, P., Gerstoft, P., Stephen, R., Anthony, R., Aster, R., Cai, C., Nyblade, A., & Wiens, D. (2016). Ice shelf structure derived from dispersion curve analysis of ambient seismic noise, Ross Ice Shelf, Antarctica. Geophysical Journal International, 205(2), 785–795. https://doi.org/10.1093/gji/ggw036
Dingemans, M. W. (1997). Water wave propagation over uneven bottoms: Part 1 – Linear wave propagation. World Scientific.
Dunham, E. M., Belanger, D., Cong, L., & Kozdon, J. E. (2011). Earthquake ruptures with strongly rate-weakening friction and off-fault plasticity, Part 1: Planar faults. Bulletin of the Seismological Society of America, 101(5), 2296–2307. https://doi.org/https://doi.org/10.1785/0120100075
Dupont, T., & Alley, R. (2005). Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophysical Research Letters, 32(4). https://doi.org/https://doi.org/10.1029/2004GL022024
Ewing, M., & Crary, A. (1934). Propagation of elastic waves in ice. Part II. Physics, 5(7), 181–184.
Fox, C., & Squire, V. A. (1990). Reflection and transmission characteristics at the edge of shore fast sea ice. Journal of Geophysical Research: Oceans, 95(C7), 11629–11639. https://doi.org/https://doi.org/10.1029/JC095iC07p11629
Fox, C., & Squire, V. A. (1991). Coupling between the ocean and an ice shelf. Annals of Glaciology, 15, 101–108. https://doi.org/https://doi.org/10.3189/1991AoG15-1-101-108
Holdsworth, G., & Glynn, J. (1978). Iceberg calving from floating glaciers by a vibrating mechanism. Nature, 274(5670), 464–466. https://doi.org/https://doi.org/10.1038/274464a0
Ilyas, M., Meylan, M. H., Lamichhane, B., & Bennetts, L. G. (2018). Time-domain and modal response of ice shelves to wave forcing using the finite element method. Journal of Fluids and Structures, 80, 113–131. https://doi.org/https://doi.org/10.1016/j.jfluidstructs.2018.03.010
Kalyanaraman, B., Bennetts, L. G., Lamichhane, B., & Meylan, M. H. (2019). On the shallow-water limit for modelling ocean-wave induced ice-shelf vibrations. Wave Motion, 90, 1–16. https://doi.org/https://doi.org/10.1016/j.wavemoti.2019.04.004
Kalyanaraman, B., Meylan, M. H., Bennetts, L. G., & Lamichhane, B. P. (2020). A coupled fluid-elasticity model for the wave forcing of an ice-shelf. Journal of Fluids and Structures, 97, 103074. https://doi.org/https://doi.org/10.1016/j.jfluidstructs.2020.103074
Kozdon, J. E., Dunham, E. M., & Nordström, J. (2012). Interaction of waves with frictional interfaces using summation-by-parts difference operators: Weak enforcement of nonlinear boundary conditions. Journal of Scientific Computing, 50(2), 341–367. https://doi.org/https://doi.org/10.1007/s10915-011-9485-3
Kozdon, J. E., Dunham, E. M., & Nordström, J. (2013). Simulation of dynamic earthquake ruptures in complex geometries using high-order finite difference methods. Journal of Scientific Computing, 55(1), 92–124. https://doi.org/https://doi.org/10.1007/s10915-012-9624-5
Kundu, P. K., Cohen, I. M., & Dowling, D. R. (2015). Fluid Mechanics. Academic Press.
Lamb, H. (1905). On deep-water waves. Proceedings of the London Mathematical Society, 2(1), 371–400.
Lamb, H. (1917). On waves in an elastic plate. Proceedings of the Royal Society of London. Series A, 93(648), 114–128. https://doi.org/https://doi.org/10.1098/rspa.1917.0008
Lipovsky, B. P. (2018). Ice shelf rift propagation and the mechanics of wave-induced fracture. Journal of Geophysical Research: Oceans, 123(6), 4014–4033. https://doi.org/https://doi.org/10.1029/2017JC013664
Lotto, G. C., & Dunham, E. M. (2015). High-order finite difference modeling of tsunami generation in a compressible ocean from offshore earthquakes. Computational Geosciences, 19(2), 327–340. https://doi.org/10.1007/s10596-015-9472-0
MacAyeal, D. R., Okal, E. A., Aster, R. C., Bassis, J. N., Brunt, K. M., Cathles, L. M., Drucker, R., Fricker, H. A., Kim, Y.-J., Martin, S., & others. (2006). Transoceanic wave propagation links iceberg calving margins of Antarctica with storms in tropics and Northern Hemisphere. Geophysical Research Letters, 33(17). https://doi.org/https://doi.org/10.1029/2006GL027235
Massom, R. A., Scambos, T. A., Bennetts, L. G., Reid, P., Squire, V. A., & Stammerjohn, S. E. (2018). Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature, 558(7710), 383–389. https://doi.org/https://doi.org/10.1038/s41586-018-0212-1
Mattsson, K., Dunham, E. M., & Werpers, J. (2018). Simulation of acoustic and flexural-gravity waves in ice-covered oceans. Journal of Computational Physics, 373, 230–252. https://doi.org/https://doi.org/10.1016/j.jcp.2018.06.060
Metropolis, N., & Ulam, S. (1949). The Monte Carlo Method. Journal of the American Statistical Association, 44(247), 335–341. https://doi.org/10.1080/01621459.1949.10483310
Meylan, M. H., Ilyas, M., Lamichhane, B. P., & Bennetts, L. G. (2021). Swell-induced flexural vibrations of a thickening ice shelf over a shoaling seabed. Proceedings of the Royal Society A, 477(2254), 20210173. https://doi.org/https://doi.org/10.1098/rspa.2021.0173
Miles, J. W. (1967). Surface-wave scattering matrix for a shelf. Journal of Fluid Mechanics, 28(4), 755–767. https://doi.org/https://doi.org/10.1017/S0022112067002423
Newman, J. (1965). Propagation of water waves over an infinite step. Journal of Fluid Mechanics, 23(2), 399–415. https://doi.org/https://doi.org/10.1017/S0022112065001453
Olinger, S., Lipovsky, B. P., Denolle, M., & Crowell, B. W. (2022). Tracking the cracking: a holistic analysis of rapid ice shelf fracture using seismology, geodesy, and satellite imagery on the Pine Island Glacier ice shelf, West Antarctica. Geophysical Research Letters, e2021GL097604. https://doi.org/https://doi.org/10.1029/2021GL097604
Olinger, S., Lipovsky, B., Wiens, D., Aster, R., Bromirski, P., Chen, Z., Gerstoft, P., Nyblade, A., & Stephen, R. (2019). Tidal and thermal stresses drive seismicity along a major Ross Ice Shelf rift. Geophysical Research Letters, 46(12), 6644–6652. https://doi.org/https://doi.org/10.1029/2019GL082842
Paolo, F. S., Fricker, H. A., & Padman, L. (2015). Volume loss from Antarctic ice shelves is accelerating. Science, 348(6232), 327–331. https://doi.org/10.1126/science.aaa0940
Press, F., & Ewing, M. (1951). Propagation of elastic waves in a floating ice sheet. Eos, Transactions American Geophysical Union, 32(5), 673–678. https://doi.org/https://doi.org/10.1029/TR032i005p00673
Pritchard, Hd., Ligtenberg, S. R., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R., & Padman, L. (2012). Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484(7395), 502–505. https://doi.org/https://doi.org/10.1038/nature10968
Rignot, E., Jacobs, S., Mouginot, J., & Scheuchl, B. (2013). Ice-shelf melting around Antarctica. Science, 341(6143), 266–270. https://doi.org/10.1126/science.1235798
Rodgers, P. (1968). The response of the horizontal pendulum seismometer to Rayleigh and Love waves, tilt, and free oscillations of the Earth. Bulletin of the Seismological Society of America, 58(5), 1385–1406. https://doi.org/https://doi.org/10.1785/BSSA0580051385
Rott, H., Skvarca, P., & Nagler, T. (1996). Rapid collapse of northern Larsen ice shelf, Antarctica. Science, 271(5250), 788–792. https://doi.org/10.1126/science.271.5250.788
Scambos, T. A., Bohlander, J., Shuman, C. A., & Skvarca, P. (2004). Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophysical Research Letters, 31(18). https://doi.org/10.1029/2004GL020670
Sells, C. L. (1965). The effect of a sudden change of shape of the bottom of a slightly compressible ocean. Philosophical Transactions of the Royal Society of London. Series A, 258(1092), 495–528. https://doi.org/https://doi.org/10.1098/rsta.1965.0049
Sergienko, O V. (2017). Behavior of flexural gravity waves on ice shelves: Application to the Ross Ice Shelf. Journal of Geophysical Research: Oceans, 122(8), 6147–6164. https://doi.org/https://doi.org/10.1002/2017JC012947
Sergienko, Olga V. (2010). Elastic response of floating glacier ice to impact of long-period ocean waves. Journal of Geophysical Research: Earth Surface, 115(F4). https://doi.org/https://doi.org/10.1029/2010JF001721
Sergienko, Olga V. (2013). Normal modes of a coupled ice-shelf/sub-ice-shelf cavity system. Journal of Glaciology, 59(213), 76–80. https://doi.org/https://doi.org/10.3189/2013JoG12J096
Squire, V. A. (2007). Of ocean waves and sea-ice revisited. Cold Regions Science and Technology, 49(2), 110–133. https://doi.org/https://doi.org/10.1016/j.coldregions.2007.04.007
Squire, V. A., Dugan, J. P., Wadhams, P., Rottier, P. J., & Liu, A. K. (1995). Of ocean waves and sea ice. Annual Review of Fluid Mechanics, 27(1), 115–168. https://doi.org/https://doi.org/10.1146/annurev.fl.27.010195.000555
Tanimoto, T., & Wang, J. (2018). Low-frequency seismic noise characteristics from the analysis of co-located seismic and pressure data. Journal of Geophysical Research: Solid Earth, 123(7), 5853–5885. https://doi.org/https://doi.org/10.1029/2018JB015519
Tazhimbetov, N., Almquist, M., Werpers, J., & Dunham, E. (2022). Simulation of flexural-gravity wave propagation for elastic plates in shallow water using energy-stable finite difference method with weakly enforced boundary and interface conditions. Available at SSRN 4147169. https://doi.org/http://dx.doi.org/10.2139/ssrn.4147169
Timoshenko, S. P., & Goodier, J. N. (1970). Theory of Elasticity. McGraw Hill.
Walker, R., Dupont, T., Parizek, B., & Alley, R. (2008). Effects of basal-melting distribution on the retreat of ice-shelf grounding lines. Geophysical Research Letters, 35(17). https://doi.org/https://doi.org/10.1029/2008GL034947
Yamamoto, T. (1982). Gravity waves and acoustic waves generated by submarine earthquakes. International Journal of Soil Dynamics and Earthquake Engineering, 1(2), 75–82. https://doi.org/https://doi.org/10.1016/0261-7277(82)90016-X
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Lauren Abrahams, Jose Mierzejewski , Eric Dunham, Peter D. Bromirski

This work is licensed under a Creative Commons Attribution 4.0 International License.