Seismic Architecture of the Lithosphere-Asthenosphere System in the Western United States from a Joint Inversion of Body- and Surface-wave Observations: Distribution of Partial Melt in the Upper Mantle

Authors

  • Joseph Byrnes School of Earth and Sustainability, Northern Arizona University https://orcid.org/0000-0002-6161-399X
  • James Gaherty School of Earth and Sustainability, Northern Arizona University; Lamont-Doherty Earth Observatory, Columbia University https://orcid.org/0000-0003-2513-5510
  • Emily Hopper Lamont-Doherty Earth Observatory, Columbia University

DOI:

https://doi.org/10.26443/seismica.v2i2.272

Keywords:

seismic tomography, surface wave imaging, receiver function, lithosophere-asthenosphere boundary, colorado plateau

Abstract

Quantitative evaluation of the physical state of the upper mantle, including mapping temperature variations and the possible distribution of partial melt, requires accurately characterizing absolute seismic velocities near seismic discontinuities. We present a joint inversion for absolute but discontinuous models of shear-wave velocity (Vs) using 4 types of data: Rayleigh wave phases velocities, P-to-s receiver functions, S-to-p receiver functions, and Pn velocities. Application to the western United States clarifies where upper mantle discontinuities are lithosphere-asthenosphere boundaries (LAB) or mid-lithospheric discontinuities (MLD). Values of Vs below 4 km/s are observed below the LAB over much of the Basin and Range and below the edges of the Colorado Plateau; the current generation of experimentally based models for shear-wave velocity in the mantle cannot explain such low Vs without invoking the presence of melt. Large gradients of Vs below the LAB also require a gradient in melt-fraction. Nearly all volcanism of Pleistocene or younger age occurred where we infer the presence of melt below the LAB. Only the ultrapotassic Leucite Hills in the Wyoming Craton lie above an MLD. Here, the seismic constraints allow for the melting of phlogopite below the MLD.

References

Abt, D. L., Fischer, K. M., French, S. W., Ford, H. A., Yuan, H., & Romanowicz, B. (2010). North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions. Journal of Geophysical Research: Solid Earth, 115(B9). https://doi.org/10.1029/2009JB006914

Ave Lallemant, H. G., Mercier, J.-C. C., Carter, N. L., & Ross, J. V. (1980). Rheology of the upper mantle: Inferences from peridotite xenoliths. Tectonophysics, 70(1), 85–113. https://doi.org/10.1016/0040-1951(80)90022-0

Babikoff, J. C., & Dalton, C. A. (2019). Long-Period Rayleigh Wave Phase Velocity Tomography Using USArray. Geochemistry, Geophysics, Geosystems, 20(4), 1990–2006. https://doi.org/10.1029/2018GC008073

Ballmer, M. D., Conrad, C. P., Smith, E. I., & Johnsen, R. (2015). Intraplate volcanism at the edges of the Colorado Plateau sustained by a combination of triggered edge-driven convection and shear-driven upwelling. Geochemistry, Geophysics, Geosystems, 16(2), 366–379. https://doi.org/10.1002/2014GC005641

Behn, M. D., Hirth, G., & Elsenbeck II, J. R. (2009). Implications of grain size evolution on the seismic structure of the oceanic upper mantle. Earth and Planetary Science Letters, 282(1–4), 178–189. https://doi.org/10.1016/j.epsl.2009.03.014

Best, M. G., Christiansen, E. H., de Silva, S., & Lipman, P. W. (2016). Slab-rollback ignimbrite flareups in the southern Great Basin and other Cenozoic American arcs: A distinct style of arc volcanism. Geosphere, 12(4), 1097–1135. https://doi.org/10.1130/GES01285.1

Bodin, T., Leiva, J., Romanowicz, B., Maupin, V., & Yuan, H. (2016). Imaging anisotropic layering with Bayesian inversion of multiple data types. Geophys. J. Int., 206(1), 605–629. https://doi.org/10.1093/gji/ggw124

Buehler, J. S., & Shearer, P. M. (2014). Anisotropy and Vp / Vs in the uppermost mantle beneath the western United States from joint analysis of Pn and Sn phases. J. Geophys. Res. Solid Earth, 119(2), 1200–1219. https://doi.org/10.1002/2013JB010559

Buehler, J. S., & Shearer, P. M. (2017). Uppermost mantle seismic velocity structure beneath USArray. Journal of Geophysical Research: Solid Earth, 122(1), 436–448. https://doi.org/10.1002/2016JB013265

Byrnes, J., Gaherty, J., & Hopper, E. (2023). Seismic Architecture of the Lithosphere- Asthenosphere System in the Western United States from a Joint Inversion of Body- and Surface-wave Observations: Distribution of Partial Melt in the Upper Mantle. Zenodo. https://doi.org/10.5281/zenodo.8237272

Byrnes, J. S., Hooft, E. E. E., Toomey, D. R., Villagómez, D. R., Geist, D. J., & Solomon, S. C. (2015). An upper mantle seismic discontinuity beneath the Galápagos Archipelago and its implications for studies of the lithosphere-asthenosphere boundary. Geochemistry, Geophysics, Geosystems, 16(4), 1070–1088. https://doi.org/10.1002/2014GC005694

Chai, C., Ammon, C. J., Maceira, M., & Herrmann, R. B. (2015). Inverting interpolated receiver functions with surface wave dispersion and gravity: Application to the western U.S. and adjacent Canada and Mexico. Geophysical Research Letters, 42(11), 4359–4366. https://doi.org/10.1002/2015GL063733

Chantel, J., Manthilake, G., Andrault, D., Novella, D., Yu, T., & Wang, Y. (2016). Experimental evidence supports mantle partial melting in the asthenosphere. Science Advances, 2(5), e1600246. https://doi.org/10.1126/sciadv.1600246

Clouzet, P., Masson, Y., & Romanowicz, B. (2018). Box Tomography: first application to the imaging of upper-mantle shear velocity and radial anisotropy structure beneath the North American continent. Geophysical Journal International, 213(3), 1849–1875. https://doi.org/10.1093/gji/ggy078

Crow, R., Karlstrom, K., Asmerom, Y., Schmandt, B., Polyak, V., & DuFrane, S. A. (2011). Shrinking of the Colorado Plateau via lithospheric mantle erosion: Evidence from Nd and Sr isotopes and geochronology of Neogene basalts. Geology, 39(1), 27–30. https://doi.org/10.1130/G31611.1

Dasgupta, R., Hirschmann, M. M., & Smith, N. D. (2007). Partial Melting Experiments of Peridotite + CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts. Journal of Petrology, 48(11), 2093–2124. https://doi.org/10.1093/petrology/egm053

Dasgupta, R., Mallik, A., Tsuno, K., Withers, A. C., Hirth, G., & Hirschmann, M. M. (2013). Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature, 493(7431), 211–215. https://doi.org/10.1038/nature11731

Debayle, E., Bodin, T., Durand, S., & Ricard, Y. (2020). Seismic evidence for partial melt below tectonic plates. Nature, 586(7830), 555–559. https://doi.org/10.1038/s41586-020-2809-4

Delph, J. R., Levander, A., & Niu, F. (2018). Fluid Controls on the Heterogeneous Seismic Characteristics of the Cascadia Margin. Geophysical Research Letters, 45(20), 11,021-11,029. https://doi.org/10.1029/2018GL079518

Delph, J. R., Zandt, G., & Beck, S. L. (2015). A new approach to obtaining a 3D shear wave velocity model of the crust and upper mantle: An application to eastern Turkey. Tectonophysics, 665, 92–100. https://doi.org/10.1016/j.tecto.2015.09.031

Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7

Eilon, Z., Fischer, K. M., & Dalton, C. A. (2018). An adaptive Bayesian inversion for upper-mantle structure using surface waves and scattered body waves. Geophysical Journal International, 214(1), 232–253. https://doi.org/10.1093/gji/ggy137

Ekström, G. (2014). Love and Rayleigh phase-velocity maps, 5–40 s, of the western and central USA from USArray data. Earth and Planetary Science Letters, 402, 42–49. https://doi.org/10.1016/j.epsl.2013.11.022

Ekström, G. (2017). Short-period surface-wave phase velocities across the conterminous United States. Physics of the Earth and Planetary Interiors, 270, 168–175. https://doi.org/10.1016/j.pepi.2017.07.010

Ekström, Göran, Abers, G. A., & Webb, S. C. (2009). Determination of surface-wave phase velocities across USArray from noise and Aki’s spectral formulation. Geophysical Research Letters, 36(18). https://doi.org/10.1029/2009GL039131

Faul, U. H. (1997). Permeability of partially molten upper mantle rocks from experiments and percolation theory. Journal of Geophysical Research: Solid Earth, 102(B5), 10299–10311. https://doi.org/10.1029/96JB03460

Faul, U. H. (2001). Melt retention and segregation beneath mid-ocean ridges. Nature, 410(6831), 920–923. https://doi.org/10.1038/35073556

Faul, U. H., & Jackson, I. (2005). The seismological signature of temperature and grain size variations in the upper mantle. Earth and Planetary Science Letters, 234(1), 119–134. https://doi.org/10.1016/j.epsl.2005.02.008

Fenneman, N. M., & Johnson, D. W. (1946). Reston, VA: US Geological Survey, Physiographic Committee Special Map. Physiographic Divisions of the Conterminous U.S.

Fischer, K. M., Ford, H. A., Abt, D. L., & Rychert, C. A. (2010). The Lithosphere-Asthenosphere Boundary. Annual Review of Earth and Planetary Sciences, 38(1), 551–575. https://doi.org/10.1146/annurev-earth-040809-152438

Fishwick, S. (2010). Surface wave tomography: Imaging of the lithosphere–asthenosphere boundary beneath central and southern Africa? Lithos, 120(1), 63–73. https://doi.org/10.1016/j.lithos.2010.05.011

Foley, S. (1992). Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos, 28(3), 435–453. https://doi.org/10.1016/0024-4937(92)90018-T

Foley, S. F., Venturelli, G., Green, D. H., & Toscani, L. (1987). The ultrapotassic rocks: Characteristics, classification, and constraints for petrogenetic models. Earth-Science Reviews, 24(2), 81–134. https://doi.org/10.1016/0012-8252(87)90001-8

Ford, H. A., Fischer, K. M., Abt, D. L., Rychert, C. A., & Elkins-Tanton, L. T. (2010). The lithosphere–asthenosphere boundary and cratonic lithospheric layering beneath Australia from Sp wave imaging. Earth and Planetary Science Letters, 300(3), 299–310. https://doi.org/10.1016/j.epsl.2010.10.007

Ford, H. A., Long, M. D., & Wirth, E. A. (2016). Midlithospheric discontinuities and complex anisotropic layering in the mantle lithosphere beneath the Wyoming and Superior Provinces. Journal of Geophysical Research: Solid Earth, 121(9), 6675–6697. https://doi.org/10.1002/2016JB012978

Frost, D. J. (2006). The Stability of Hydrous Mantle Phases. Reviews in Mineralogy and Geochemistry, 62(1), 243–271. https://doi.org/10.2138/rmg.2006.62.11

Gaherty, J. B., Jordan, T. H., & Gee, L. S. (1996). Seismic structure of the upper mantle in a central Pacific corridor. J. Geophys. Res., 101(B10), 22291–22309. https://doi.org/10.1029/96JB01882

Garapić, G., Faul, U. H., & Brisson, E. (2013). High-resolution imaging of the melt distribution in partially molten upper mantle rocks: evidence for wetted two-grain boundaries. Geochem. Geophys. Geosyst., 14(3), 556–566. https://doi.org/10.1029/2012GC004547

Gilbert, H. (2012). Crustal structure and signatures of recent tectonism as influenced by ancient terranes in the western United States. Geosphere, 8(1), 141–157. https://doi.org/10.1130/GES00720.1

Glazner, A. F. (2004). Animation of space-time trends in Cenozoic magmatism of western North America. Geological Society of America Abstracts With Programs, 36(4), 10.

Golos, E. M., & Fischer, K. M. (2022). New Insights Into Lithospheric Structure and Melting Beneath the Colorado Plateau. Geochemistry, Geophysics, Geosystems, 23(3), e2021GC010252. https://doi.org/10.1029/2021GC010252

Grand, S. P., & Helmberger, D. V. (1984). Upper mantle shear structure of North America. Geophysical Journal International, 76(2), 399–438. https://doi.org/10.1111/j.1365-246X.1984.tb05053.x

Hacker, B. R., & Abers, G. A. (2004). Subduction Factory 3: An Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. Geochemistry, Geophysics, Geosystems, 5(1). https://doi.org/10.1029/2003GC000614

Hammond, W. C., & Humphreys, E. D. (2000). Upper mantle seismic wave velocity: Effects of realistic partial melt geometries. Journal of Geophysical Research: Solid Earth, 105(B5), 10975–10986. https://doi.org/10.1029/2000JB900041

Hansen, S. M., Dueker, K. G., Stachnik, J. C., Aster, R. C., & Karlstrom, K. E. (2013). A rootless rockies—Support and lithospheric structure of the Colorado Rocky Mountains inferred from CREST and TA seismic data. Geochemistry, Geophysics, Geosystems, 14(8). https://doi.org/https://doi.org/10.1002/ggge.20143

Hansen, Steven M., Dueker, K., & Schmandt, B. (2015). Thermal classification of lithospheric discontinuities beneath USArray. Earth and Planetary Science Letters, 431, 36–47. https://doi.org/10.1016/j.epsl.2015.09.009

Havlin, C., Holtzman, B. K., & Hopper, E. (2021). Inference of thermodynamic state in the asthenosphere from anelastic properties, with applications to North American upper mantle. Physics of the Earth and Planetary Interiors, 314, 106639. https://doi.org/10.1016/j.pepi.2020.106639

Helffrich, G., Kendall, J.-M., Hammond, J. O. S., & Carroll, M. R. (2011). Sulfide melts and long-term low seismic wavespeeds in lithospheric and asthenospheric mantle. Geophys. Res. Lett., 38(11). https://doi.org/10.1029/2011GL047126

Hirschmann, M. M. (2000). Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochemistry, Geophysics, Geosystems, 1(10). https://doi.org/10.1029/2000GC000070

Holtzman, B. K. (2016). Questions on the existence, persistence, and mechanical effects of a very small melt fraction in the asthenosphere. Geochemistry, Geophysics, Geosystems, 17(2), 470–484. https://doi.org/10.1002/2015GC006102

Holtzman, B. K., & Kendall, J.-M. (2010). Organized melt, seismic anisotropy, and plate boundary lubrication. Geochem. Geophys. Geosyst., 11(12). https://doi.org/10.1029/2010GC003296

Hopper, E., & Fischer, K. M. (2018). The Changing Face of the Lithosphere-Asthenosphere Boundary: Imaging Continental Scale Patterns in Upper Mantle Structure Across the Contiguous U.S. With Sp Converted Waves. Geochemistry, Geophysics, Geosystems, 19(8), 2593–2614. https://doi.org/10.1029/2018GC007476

Humphreys, E. D., & Dueker, K. G. (1994). Physical state of the western U.S. upper mantle. J. Geophys. Res., 99(B5), 9635–9650. https://doi.org/10.1029/93JB02640

Humphreys, E. D., Schmandt, B., Bezada, M. J., & Perry-Houts, J. (2015). Recent craton growth by slab stacking beneath Wyoming. Earth and Planetary Science Letters, 429, 170–180. https://doi.org/10.1016/j.epsl.2015.07.066

IRIS-DMC. (2011). Data Services Products: EMC, A repository of Earth models. https://doi.org/https://doi.org/10.17611/DP/EMC.1

Jackson, I., & Faul, U. H. (2010). Grainsize-sensitive viscoelastic relaxation in olivine: Towards a robust laboratory-based model for seismological application. Physics of the Earth and Planetary Interiors, 183(1), 151–163. https://doi.org/10.1016/j.pepi.2010.09.005

Jin, G., & Gaherty, J. B. (2015). Surface wave phase-velocity tomography based on multichannel cross-correlation. Geophysical Journal International, 201(3), 1383–1398. https://doi.org/10.1093/gji/ggv079

Kanamori, H., & Anderson, D. L. (1977). Importance of physical dispersion in surface wave and free oscillation problems: Review. Reviews of Geophysics, 15(1), 105–112. https://doi.org/10.1029/RG015i001p00105

Karato, S., & Jung, H. (1998). Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth and Planetary Science Letters, 157(3), 193–207. https://doi.org/10.1016/S0012-821X(98)00034-X

Karato, S., Olugboji, T., & Park, J. (2015). Mechanisms and geologic significance of the mid-lithosphere discontinuity in the continents. Nature Geosci, 8(7), 509–514. https://doi.org/10.1038/ngeo2462

Karato, S., & Wu, P. (1993). Rheology of the Upper Mantle: A Synthesis. Science, 260(5109), 771–778. https://doi.org/10.1126/science.260.5109.771

Katz, R. F., Spiegelman, M., & Langmuir, C. H. (2003). A new parameterization of hydrous mantle melting. Geochemistry, Geophysics, Geosystems, 4(9). https://doi.org/10.1029/2002GC000433

Kawakatsu, H., Kumar, P., Takei, Y., Shinohara, M., Kanazawa, T., Araki, E., & Suyehiro, K. (2009). Seismic Evidence for Sharp Lithosphere-Asthenosphere Boundaries of Oceanic Plates. Science, 324(5926), 499–502. https://doi.org/10.1126/science.1169499

Kind, R., Yuan, X., & Kumar, P. (2012). Seismic receiver functions and the lithosphere–asthenosphere boundary. Tectonophysics, 536–537, 25–43. https://doi.org/10.1016/j.tecto.2012.03.005

Kumar, P., Kind, R., Yuan, X., & Mechie, J. (2012). USArray Receiver Function Images of the Lithosphere-Asthenosphere Boundary. Seismological Research Letters, 83(3), 486–491. https://doi.org/10.1785/gssrl.83.3.486

Lekić, V., & Fischer, K. M. (2014). Contrasting lithospheric signatures across the western United States revealed by Sp receiver functions. Earth and Planetary Science Letters, 402, 90–98. https://doi.org/10.1016/j.epsl.2013.11.026

Levander, A., Schmandt, B., Miller, M. S., Liu, K., Karlstrom, K. E., Crow, R. S., Lee, C.-T. A., & Humphreys, E. D. (2011). Continuing Colorado plateau uplift by delamination-style convective lithospheric downwelling. Nature, 472(7344), 461–465. https://doi.org/10.1038/nature10001

Levander, Alan, & Miller, M. S. (2012). Evolutionary aspects of lithosphere discontinuity structure in the western U.S. Geochem. Geophys. Geosyst., 13(7). https://doi.org/10.1029/2012GC004056

Lin, F.-C., & Ritzwoller, M. H. (2011). Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure. Geophysical Journal International, 186(3), 1104–1120. https://doi.org/10.1111/j.1365-246X.2011.05070.x

Liu, T., & Shearer, P. M. (2021). Complicated Lithospheric Structure Beneath the Contiguous US Revealed by Teleseismic S-Reflections. Journal of Geophysical Research: Solid Earth, 125(5), e2020JB021624. https://doi.org/https://doi.org/10.1029/2020JB021624

Ma, Z., Dalton, C. A., Russell, J. B., Gaherty, J. B., Hirth, G., & Forsyth, D. W. (2020). Shear attenuation and anelastic mechanisms in the central Pacific upper mantle. Earth and Planetary Science Letters, 536, 116148. https://doi.org/10.1016/j.epsl.2020.116148

Mallik, A., & Dasgupta, R. (2013). Reactive Infiltration of MORB-Eclogite-Derived Carbonated Silicate Melt into Fertile Peridotite at 3 GPa and Genesis of Alkalic Magmas. Journal of Petrology, 54(11), 2267–2300. https://doi.org/10.1093/petrology/egt047

Mark, H. F., Collins, J. A., Lizarralde, D., Hirth, G., Gaherty, J. B., Evans, R. L., & Behn, M. D. (2021). Constraints on the Depth, Thickness, and Strength of the G Discontinuity in the Central Pacific From S Receiver Functions. Journal of Geophysical Research: Solid Earth, 126(4), e2019JB019256. https://doi.org/10.1029/2019JB019256

Masters, G., Woodhouse, J. H., & Freeman, G. (2011). Mineos v1.0.2. Computational infrastructure for geodynamics. https://doi.org/http://geoweb.cse.ucdavis.edu/cig/software/mineos/

McCarthy, C., Takei, Y., & Hiraga, T. (2011). Experimental study of attenuation and dispersion over a broad frequency range: 2. The universal scaling of polycrystalline materials. Journal of Geophysical Research: Solid Earth, 116(B9). https://doi.org/10.1029/2011JB008384

Mehouachi, F., & Singh, S. C. (2018). Water-rich sublithospheric melt channel in the equatorial Atlantic Ocean. Nature Geosci, 11(1), 65–69. https://doi.org/10.1038/s41561-017-0034-z

Menke, W. (2012). Geophysical Data Analysis: Discrete Inverse Theory: MATLAB Edition. Academic Press.

Mirnejad, H., & Bell, K. (2006). Origin and Source Evolution of the Leucite Hills Lamproites: Evidence from Sr-Nd-Pb-O Isotopic Compositions. Journal of Petrology, 47(12), 2463–2489. https://doi.org/10.1093/petrology/egl051

Montagner, J.-P., & Anderson, D. L. (1989). Petrological constraints on seismic anisotropy. Physics of the Earth and Planetary Interiors, 54(1–2), 82–105. https://doi.org/10.1016/0031-9201(89)90189-1

Olugboji, T. M., Karato, S., & Park, J. (2013). Structures of the oceanic lithosphere-asthenosphere boundary: Mineral-physics modeling and seismological signatures. Geochem. Geophys. Geosyst., 14(4), 880–901. https://doi.org/10.1002/ggge.20086

Pakiser, L. C. (1963). Structure of the crust and upper mantle in the western United States. Journal of Geophysical Research (1896-1977), 68(20), 5747–5756. https://doi.org/10.1029/JZ068i020p05747

Pilet, S. (2015). Generation of low-silica alkaline lavas: Petrological constraints, models, and thermal implications. The Interdisciplinary Earth: A Volume in Honor of Don L. Anderson: Geological Society of America Special Paper 514 and American Geophysical Union Special Publication. https://doi.org/10.1130/2015.2514(17)

Pilet, S., Baker, M. B., & Stolper, E. M. (2008). Metasomatized Lithosphere and the Origin of Alkaline Lavas. Science, 320(5878), 916–919. https://doi.org/10.1126/science.1156563

Plank, T., & Forsyth, D. W. (2016). Thermal structure and melting conditions in the mantle beneath the Basin and Range province from seismology and petrology. Geochemistry, Geophysics, Geosystems, 17(4), 1312–1338. https://doi.org/10.1002/2015GC006205

Porter, R. C., van der Lee, S., & Whitmeyer, S. J. (2019). Synthesizing EarthScope data to constrain the thermal evolution of the continental U.S. lithosphere. Geosphere, 15(6), 1722–1737. https://doi.org/10.1130/GES02000.1

Porter, R., Liu, Y., & Holt, W. E. (2016). Lithospheric records of orogeny within the continental U.S. Geophysical Research Letters, 43(1), 144–153. https://doi.org/10.1002/2015GL066950

Porter, R., & Reid, M. (2021). Mapping the Thermal Lithosphere and Melting Across the Continental US. Geophysical Research Letters, 48(7), e2020GL092197. https://doi.org/10.1029/2020GL092197

Priestley, K., & McKenzie, D. (2006). The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters, 244(1), 285–301. https://doi.org/10.1016/j.epsl.2006.01.008

Priestley, K., & McKenzie, D. (2013). The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle. Earth and Planetary Science Letters, 381, 78–91. https://doi.org/10.1016/j.epsl.2013.08.022

Roy, M., Jordan, T. H., & Pederson, J. (2009). Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere. Nature, 459(7249), 978–982. https://doi.org/10.1038/nature08052

Russell, J. B., Gaherty, J. B., Lin, P.-Y. P., Lizarralde, D., Collins, J. A., Hirth, G., & Evans, R. L. (2019). High-Resolution Constraints on Pacific Upper Mantle Petrofabric Inferred From Surface-Wave Anisotropy. Journal of Geophysical Research: Solid Earth, 124(1), 631–657. https://doi.org/10.1029/2018JB016598

Rychert, C. A., Fischer, K. M., & Rondenay, S. (2005). A sharp lithosphere–asthenosphere boundary imaged beneath eastern North America. Nature, 436(7050), 542–545. https://doi.org/10.1038/nature03904

Rychert, C. A., Rondenay, S., & Fischer, K. M. (2007). P-to-S and S-to-P imaging of a sharp lithosphere-asthenosphere boundary beneath eastern North America. Journal of Geophysical Research: Solid Earth, 112(B8). https://doi.org/10.1029/2006JB004619

Saha, S., Peng, Y., Dasgupta, R., Mookherjee, M., & Fischer, K. M. (2021). Assessing the presence of volatile-bearing mineral phases in the cratonic mantle as a possible cause of mid-lithospheric discontinuities. Earth and Planetary Science Letters, 553, 116602. https://doi.org/10.1016/j.epsl.2020.116602

Sakamaki, T., Suzuki, A., Ohtani, E., Terasaki, H., Urakawa, S., Katayama, Y., Funakoshi, K., Wang, Y., Hernlund, J. W., & Ballmer, M. D. (2013). Ponded melt at the boundary between the lithosphere and asthenosphere. Nature Geosci, 6(12), 1041–1044. https://doi.org/10.1038/ngeo1982

Sarafian, E., Gaetani, G. A., Hauri, E. H., & Sarafian, A. R. (2017). Experimental constraints on the damp peridotite solidus and oceanic mantle potential temperature. Science, 355(6328), 942–945. https://doi.org/10.1126/science.aaj2165

Schmandt, B., & Humphreys, E. (2011). Seismically imaged relict slab from the 55 Ma Siletzia accretion to the northwest United States. Geology, 39(2), 175–178. https://doi.org/10.1130/G31558.1

Schmandt, Brandon, & Humphreys, E. (2010). Complex subduction and small-scale convection revealed by body-wave tomography of the western United States upper mantle. Earth and Planetary Science Letters, 297(3), 435–445. https://doi.org/10.1016/j.epsl.2010.06.047

Schmandt, Brandon, Lin, F.-C., & Karlstrom, K. E. (2015). Distinct crustal isostasy trends east and west of the Rocky Mountain Front. Geophysical Research Letters, 42(23), 10,290-10,298. https://doi.org/10.1002/2015GL066593

Selway, K., Ford, H., & Kelemen, P. (2015). The seismic mid-lithosphere discontinuity. Earth and Planetary Science Letters, 414, 45–57. https://doi.org/10.1016/j.epsl.2014.12.029

Shen, W., & Ritzwoller, M. H. (2016). Crustal and uppermost mantle structure beneath the United States. Journal of Geophysical Research: Solid Earth, 121(6), 4306–4342. https://doi.org/10.1002/2016JB012887

Solomon, S. C. (1972). Seismic-wave attenuation and partial melting in the upper mantle of North America. J. Geophys. Res., 77(8), 1483–1502. https://doi.org/10.1029/JB077i008p01483

Sparks, D. W., & Parmentier, E. M. (1991). Melt extraction from the mantle beneath spreading centers. Earth and Planetary Science Letters, 105(4), 368–377. https://doi.org/10.1016/0012-821X(91)90178-K

Stixrude, L., & Lithgow-Bertelloni, C. (2005). Mineralogy and elasticity of the oceanic upper mantle: Origin of the low-velocity zone. Journal of Geophysical Research: Solid Earth, 110(B3). https://doi.org/10.1029/2004JB002965

Takei, Y. (2002). Effect of pore geometry on VP/VS: From equilibrium geometry to crack. Journal of Geophysical Research: Solid Earth, 107(B2), ECV 6-1-ECV 6-12. https://doi.org/10.1029/2001JB000522

Takei, Y., & Holtzman, B. K. (2009). Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control model. Journal of Geophysical Research: Solid Earth, 114(B6). https://doi.org/10.1029/2008JB005850

Tan, Y., & Helmberger, D. V. (2007). Trans-Pacific upper mantle shear velocity structure. Journal of Geophysical Research: Solid Earth, 112(B8). https://doi.org/10.1029/2006JB004853

Thibault, Y., Edgar, A. D., & Lloyd, F. E. (1992). Experimental investigation of melts from a carbonated phlogopite lherzolite: Implications for metasomatism in the continental lithospheric mantle. American Mineralogist, 77(7–8), 784–794.

van Wijk, J. W., Baldridge, W. S., van Hunen, J., Goes, S., Aster, R., Coblentz, D. D., Grand, S. P., & Ni, J. (2010). Small-scale convection at the edge of the Colorado Plateau: Implications for topography, magmatism, and evolution of Proterozoic lithosphere. Geology, 38(7), 611–614. https://doi.org/10.1130/G31031.1

Walker, J. D., Bowers, T. D., Glazner, A. F., Famer, G. L., & and Carlson, R. (2004). Creation of a North American volcanic and plutonic rock data-base (NAVDAT). Geological Society of America Abstracts With Programs, 4(4), 9.

Wannamaker, P. E., Hasterok, D. P., Johnston, J. M., Stodt, J. A., Hall, D. B., Sodergren, T. L., Pellerin, L., Maris, V., Doerner, W. M., Groenewold, K. A., & Unsworth, M. J. (2008). Lithospheric dismemberment and magmatic processes of the Great Basin–Colorado Plateau transition, Utah, implied from magnetotellurics. Geochemistry, Geophysics, Geosystems, 9(5). https://doi.org/10.1029/2007GC001886

Whitmeyer, S. J., & Karlstrom, K. E. (2007). Tectonic model for the Proterozoic growth of North America. Geosphere, 3(4), 220–259. https://doi.org/10.1130/GES00055.1

Wirth, E. A., & Long, M. D. (2014). A contrast in anisotropy across mid-lithospheric discontinuities beneath the central United States—A relic of craton formation. Geology, 42(10), 851–854. https://doi.org/10.1130/G35804.1

Xie, J., Chu, R., & Yang, Y. (2018). 3-D Upper-Mantle Shear Velocity Model Beneath the Contiguous United States Based on Broadband Surface Wave from Ambient Seismic Noise. Pure and Applied Geophysics, 175. https://doi.org/10.1007/s00024-018-1881-2

Yamauchi, H., & Takei, Y. (2016). Polycrystal anelasticity at near-solidus temperatures. Journal of Geophysical Research: Solid Earth, 121(11), 7790–7820. https://doi.org/10.1002/2016JB013316

Yamauchi, H., & Takei, Y. (2020). Application of a Premelting Model to the Lithosphere-Asthenosphere Boundary. Geochemistry, Geophysics, Geosystems, 21(11), e2020GC009338. https://doi.org/10.1029/2020GC009338

Published

2023-08-29

How to Cite

Byrnes, J., Gaherty, J., & Hopper, E. (2023). Seismic Architecture of the Lithosphere-Asthenosphere System in the Western United States from a Joint Inversion of Body- and Surface-wave Observations: Distribution of Partial Melt in the Upper Mantle. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.272

Issue

Section

Articles

Funding data