Seismic Architecture of the Lithosphere-Asthenosphere System in the Western United States from a Joint Inversion of Body- and Surface-wave Observations: Distribution of Partial Melt in the Upper Mantle
DOI:
https://doi.org/10.26443/seismica.v2i2.272Keywords:
seismic tomography, surface wave imaging, receiver function, lithosophere-asthenosphere boundary, colorado plateauAbstract
Quantitative evaluation of the physical state of the upper mantle, including mapping temperature variations and the possible distribution of partial melt, requires accurately characterizing absolute seismic velocities near seismic discontinuities. We present a joint inversion for absolute but discontinuous models of shear-wave velocity (Vs) using 4 types of data: Rayleigh wave phases velocities, P-to-s receiver functions, S-to-p receiver functions, and Pn velocities. Application to the western United States clarifies where upper mantle discontinuities are lithosphere-asthenosphere boundaries (LAB) or mid-lithospheric discontinuities (MLD). Values of Vs below 4 km/s are observed below the LAB over much of the Basin and Range and below the edges of the Colorado Plateau; the current generation of experimentally based models for shear-wave velocity in the mantle cannot explain such low Vs without invoking the presence of melt. Large gradients of Vs below the LAB also require a gradient in melt-fraction. Nearly all volcanism of Pleistocene or younger age occurred where we infer the presence of melt below the LAB. Only the ultrapotassic Leucite Hills in the Wyoming Craton lie above an MLD. Here, the seismic constraints allow for the melting of phlogopite below the MLD.
References
Abt, D. L., Fischer, K. M., French, S. W., Ford, H. A., Yuan, H., & Romanowicz, B. (2010). North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions. Journal of Geophysical Research: Solid Earth, 115(B9). https://doi.org/10.1029/2009JB006914 DOI: https://doi.org/10.1029/2009JB006914
Ave Lallemant, H. G., Mercier, J.-C. C., Carter, N. L., & Ross, J. V. (1980). Rheology of the upper mantle: Inferences from peridotite xenoliths. Tectonophysics, 70(1), 85–113. https://doi.org/10.1016/0040-1951(80)90022-0 DOI: https://doi.org/10.1016/0040-1951(80)90022-0
Babikoff, J. C., & Dalton, C. A. (2019). Long-Period Rayleigh Wave Phase Velocity Tomography Using USArray. Geochemistry, Geophysics, Geosystems, 20(4), 1990–2006. https://doi.org/10.1029/2018GC008073 DOI: https://doi.org/10.1029/2018GC008073
Ballmer, M. D., Conrad, C. P., Smith, E. I., & Johnsen, R. (2015). Intraplate volcanism at the edges of the Colorado Plateau sustained by a combination of triggered edge-driven convection and shear-driven upwelling. Geochemistry, Geophysics, Geosystems, 16(2), 366–379. https://doi.org/10.1002/2014GC005641 DOI: https://doi.org/10.1002/2014GC005641
Behn, M. D., Hirth, G., & Elsenbeck II, J. R. (2009). Implications of grain size evolution on the seismic structure of the oceanic upper mantle. Earth and Planetary Science Letters, 282(1–4), 178–189. https://doi.org/10.1016/j.epsl.2009.03.014 DOI: https://doi.org/10.1016/j.epsl.2009.03.014
Best, M. G., Christiansen, E. H., de Silva, S., & Lipman, P. W. (2016). Slab-rollback ignimbrite flareups in the southern Great Basin and other Cenozoic American arcs: A distinct style of arc volcanism. Geosphere, 12(4), 1097–1135. https://doi.org/10.1130/GES01285.1 DOI: https://doi.org/10.1130/GES01285.1
Bodin, T., Leiva, J., Romanowicz, B., Maupin, V., & Yuan, H. (2016). Imaging anisotropic layering with Bayesian inversion of multiple data types. Geophys. J. Int., 206(1), 605–629. https://doi.org/10.1093/gji/ggw124 DOI: https://doi.org/10.1093/gji/ggw124
Buehler, J. S., & Shearer, P. M. (2014). Anisotropy and Vp / Vs in the uppermost mantle beneath the western United States from joint analysis of Pn and Sn phases. J. Geophys. Res. Solid Earth, 119(2), 1200–1219. https://doi.org/10.1002/2013JB010559 DOI: https://doi.org/10.1002/2013JB010559
Buehler, J. S., & Shearer, P. M. (2017). Uppermost mantle seismic velocity structure beneath USArray. Journal of Geophysical Research: Solid Earth, 122(1), 436–448. https://doi.org/10.1002/2016JB013265 DOI: https://doi.org/10.1002/2016JB013265
Byrnes, J., Gaherty, J., & Hopper, E. (2023). Seismic Architecture of the Lithosphere- Asthenosphere System in the Western United States from a Joint Inversion of Body- and Surface-wave Observations: Distribution of Partial Melt in the Upper Mantle. Zenodo. https://doi.org/10.5281/zenodo.8237272 DOI: https://doi.org/10.31223/X5PQ0V
Byrnes, J. S., Hooft, E. E. E., Toomey, D. R., Villagómez, D. R., Geist, D. J., & Solomon, S. C. (2015). An upper mantle seismic discontinuity beneath the Galápagos Archipelago and its implications for studies of the lithosphere-asthenosphere boundary. Geochemistry, Geophysics, Geosystems, 16(4), 1070–1088. https://doi.org/10.1002/2014GC005694 DOI: https://doi.org/10.1002/2014GC005694
Chai, C., Ammon, C. J., Maceira, M., & Herrmann, R. B. (2015). Inverting interpolated receiver functions with surface wave dispersion and gravity: Application to the western U.S. and adjacent Canada and Mexico. Geophysical Research Letters, 42(11), 4359–4366. https://doi.org/10.1002/2015GL063733 DOI: https://doi.org/10.1002/2015GL063733
Chantel, J., Manthilake, G., Andrault, D., Novella, D., Yu, T., & Wang, Y. (2016). Experimental evidence supports mantle partial melting in the asthenosphere. Science Advances, 2(5), e1600246. https://doi.org/10.1126/sciadv.1600246 DOI: https://doi.org/10.1126/sciadv.1600246
Clouzet, P., Masson, Y., & Romanowicz, B. (2018). Box Tomography: first application to the imaging of upper-mantle shear velocity and radial anisotropy structure beneath the North American continent. Geophysical Journal International, 213(3), 1849–1875. https://doi.org/10.1093/gji/ggy078 DOI: https://doi.org/10.1093/gji/ggy078
Crow, R., Karlstrom, K., Asmerom, Y., Schmandt, B., Polyak, V., & DuFrane, S. A. (2011). Shrinking of the Colorado Plateau via lithospheric mantle erosion: Evidence from Nd and Sr isotopes and geochronology of Neogene basalts. Geology, 39(1), 27–30. https://doi.org/10.1130/G31611.1 DOI: https://doi.org/10.1130/G31611.1
Dasgupta, R., Hirschmann, M. M., & Smith, N. D. (2007). Partial Melting Experiments of Peridotite + CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts. Journal of Petrology, 48(11), 2093–2124. https://doi.org/10.1093/petrology/egm053 DOI: https://doi.org/10.1093/petrology/egm053
Dasgupta, R., Mallik, A., Tsuno, K., Withers, A. C., Hirth, G., & Hirschmann, M. M. (2013). Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature, 493(7431), 211–215. https://doi.org/10.1038/nature11731 DOI: https://doi.org/10.1038/nature11731
Debayle, E., Bodin, T., Durand, S., & Ricard, Y. (2020). Seismic evidence for partial melt below tectonic plates. Nature, 586(7830), 555–559. https://doi.org/10.1038/s41586-020-2809-4 DOI: https://doi.org/10.1038/s41586-020-2809-4
Delph, J. R., Levander, A., & Niu, F. (2018). Fluid Controls on the Heterogeneous Seismic Characteristics of the Cascadia Margin. Geophysical Research Letters, 45(20), 11,021-11,029. https://doi.org/10.1029/2018GL079518 DOI: https://doi.org/10.1029/2018GL079518
Delph, J. R., Zandt, G., & Beck, S. L. (2015). A new approach to obtaining a 3D shear wave velocity model of the crust and upper mantle: An application to eastern Turkey. Tectonophysics, 665, 92–100. https://doi.org/10.1016/j.tecto.2015.09.031 DOI: https://doi.org/10.1016/j.tecto.2015.09.031
Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7 DOI: https://doi.org/10.1016/0031-9201(81)90046-7
Eilon, Z., Fischer, K. M., & Dalton, C. A. (2018). An adaptive Bayesian inversion for upper-mantle structure using surface waves and scattered body waves. Geophysical Journal International, 214(1), 232–253. https://doi.org/10.1093/gji/ggy137 DOI: https://doi.org/10.1093/gji/ggy137
Ekström, G. (2014). Love and Rayleigh phase-velocity maps, 5–40 s, of the western and central USA from USArray data. Earth and Planetary Science Letters, 402, 42–49. https://doi.org/10.1016/j.epsl.2013.11.022 DOI: https://doi.org/10.1016/j.epsl.2013.11.022
Ekström, G. (2017). Short-period surface-wave phase velocities across the conterminous United States. Physics of the Earth and Planetary Interiors, 270, 168–175. https://doi.org/10.1016/j.pepi.2017.07.010 DOI: https://doi.org/10.1016/j.pepi.2017.07.010
Ekström, Göran, Abers, G. A., & Webb, S. C. (2009). Determination of surface-wave phase velocities across USArray from noise and Aki’s spectral formulation. Geophysical Research Letters, 36(18). https://doi.org/10.1029/2009GL039131 DOI: https://doi.org/10.1029/2009GL039131
Faul, U. H. (1997). Permeability of partially molten upper mantle rocks from experiments and percolation theory. Journal of Geophysical Research: Solid Earth, 102(B5), 10299–10311. https://doi.org/10.1029/96JB03460 DOI: https://doi.org/10.1029/96JB03460
Faul, U. H. (2001). Melt retention and segregation beneath mid-ocean ridges. Nature, 410(6831), 920–923. https://doi.org/10.1038/35073556 DOI: https://doi.org/10.1038/35073556
Faul, U. H., & Jackson, I. (2005). The seismological signature of temperature and grain size variations in the upper mantle. Earth and Planetary Science Letters, 234(1), 119–134. https://doi.org/10.1016/j.epsl.2005.02.008 DOI: https://doi.org/10.1016/j.epsl.2005.02.008
Fenneman, N. M., & Johnson, D. W. (1946). Reston, VA: US Geological Survey, Physiographic Committee Special Map. Physiographic Divisions of the Conterminous U.S.
Fischer, K. M., Ford, H. A., Abt, D. L., & Rychert, C. A. (2010). The Lithosphere-Asthenosphere Boundary. Annual Review of Earth and Planetary Sciences, 38(1), 551–575. https://doi.org/10.1146/annurev-earth-040809-152438 DOI: https://doi.org/10.1146/annurev-earth-040809-152438
Fishwick, S. (2010). Surface wave tomography: Imaging of the lithosphere–asthenosphere boundary beneath central and southern Africa? Lithos, 120(1), 63–73. https://doi.org/10.1016/j.lithos.2010.05.011 DOI: https://doi.org/10.1016/j.lithos.2010.05.011
Foley, S. (1992). Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos, 28(3), 435–453. https://doi.org/10.1016/0024-4937(92)90018-T DOI: https://doi.org/10.1016/0024-4937(92)90018-T
Foley, S. F., Venturelli, G., Green, D. H., & Toscani, L. (1987). The ultrapotassic rocks: Characteristics, classification, and constraints for petrogenetic models. Earth-Science Reviews, 24(2), 81–134. https://doi.org/10.1016/0012-8252(87)90001-8 DOI: https://doi.org/10.1016/0012-8252(87)90001-8
Ford, H. A., Fischer, K. M., Abt, D. L., Rychert, C. A., & Elkins-Tanton, L. T. (2010). The lithosphere–asthenosphere boundary and cratonic lithospheric layering beneath Australia from Sp wave imaging. Earth and Planetary Science Letters, 300(3), 299–310. https://doi.org/10.1016/j.epsl.2010.10.007 DOI: https://doi.org/10.1016/j.epsl.2010.10.007
Ford, H. A., Long, M. D., & Wirth, E. A. (2016). Midlithospheric discontinuities and complex anisotropic layering in the mantle lithosphere beneath the Wyoming and Superior Provinces. Journal of Geophysical Research: Solid Earth, 121(9), 6675–6697. https://doi.org/10.1002/2016JB012978 DOI: https://doi.org/10.1002/2016JB012978
Frost, D. J. (2006). The Stability of Hydrous Mantle Phases. Reviews in Mineralogy and Geochemistry, 62(1), 243–271. https://doi.org/10.2138/rmg.2006.62.11 DOI: https://doi.org/10.2138/rmg.2006.62.11
Gaherty, J. B., Jordan, T. H., & Gee, L. S. (1996). Seismic structure of the upper mantle in a central Pacific corridor. J. Geophys. Res., 101(B10), 22291–22309. https://doi.org/10.1029/96JB01882 DOI: https://doi.org/10.1029/96JB01882
Garapić, G., Faul, U. H., & Brisson, E. (2013). High-resolution imaging of the melt distribution in partially molten upper mantle rocks: evidence for wetted two-grain boundaries. Geochem. Geophys. Geosyst., 14(3), 556–566. https://doi.org/10.1029/2012GC004547 DOI: https://doi.org/10.1029/2012GC004547
Gilbert, H. (2012). Crustal structure and signatures of recent tectonism as influenced by ancient terranes in the western United States. Geosphere, 8(1), 141–157. https://doi.org/10.1130/GES00720.1 DOI: https://doi.org/10.1130/GES00720.1
Glazner, A. F. (2004). Animation of space-time trends in Cenozoic magmatism of western North America. Geological Society of America Abstracts With Programs, 36(4), 10.
Golos, E. M., & Fischer, K. M. (2022). New Insights Into Lithospheric Structure and Melting Beneath the Colorado Plateau. Geochemistry, Geophysics, Geosystems, 23(3), e2021GC010252. https://doi.org/10.1029/2021GC010252 DOI: https://doi.org/10.1029/2021GC010252
Grand, S. P., & Helmberger, D. V. (1984). Upper mantle shear structure of North America. Geophysical Journal International, 76(2), 399–438. https://doi.org/10.1111/j.1365-246X.1984.tb05053.x DOI: https://doi.org/10.1111/j.1365-246X.1984.tb05053.x
Hacker, B. R., & Abers, G. A. (2004). Subduction Factory 3: An Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. Geochemistry, Geophysics, Geosystems, 5(1). https://doi.org/10.1029/2003GC000614 DOI: https://doi.org/10.1029/2003GC000614
Hammond, W. C., & Humphreys, E. D. (2000). Upper mantle seismic wave velocity: Effects of realistic partial melt geometries. Journal of Geophysical Research: Solid Earth, 105(B5), 10975–10986. https://doi.org/10.1029/2000JB900041 DOI: https://doi.org/10.1029/2000JB900041
Hansen, S. M., Dueker, K. G., Stachnik, J. C., Aster, R. C., & Karlstrom, K. E. (2013). A rootless rockies—Support and lithospheric structure of the Colorado Rocky Mountains inferred from CREST and TA seismic data. Geochemistry, Geophysics, Geosystems, 14(8). https://doi.org/https://doi.org/10.1002/ggge.20143 DOI: https://doi.org/10.1002/ggge.20143
Hansen, Steven M., Dueker, K., & Schmandt, B. (2015). Thermal classification of lithospheric discontinuities beneath USArray. Earth and Planetary Science Letters, 431, 36–47. https://doi.org/10.1016/j.epsl.2015.09.009 DOI: https://doi.org/10.1016/j.epsl.2015.09.009
Havlin, C., Holtzman, B. K., & Hopper, E. (2021). Inference of thermodynamic state in the asthenosphere from anelastic properties, with applications to North American upper mantle. Physics of the Earth and Planetary Interiors, 314, 106639. https://doi.org/10.1016/j.pepi.2020.106639 DOI: https://doi.org/10.1016/j.pepi.2020.106639
Helffrich, G., Kendall, J.-M., Hammond, J. O. S., & Carroll, M. R. (2011). Sulfide melts and long-term low seismic wavespeeds in lithospheric and asthenospheric mantle. Geophys. Res. Lett., 38(11). https://doi.org/10.1029/2011GL047126 DOI: https://doi.org/10.1029/2011GL047126
Hirschmann, M. M. (2000). Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochemistry, Geophysics, Geosystems, 1(10). https://doi.org/10.1029/2000GC000070 DOI: https://doi.org/10.1029/2000GC000070
Holtzman, B. K. (2016). Questions on the existence, persistence, and mechanical effects of a very small melt fraction in the asthenosphere. Geochemistry, Geophysics, Geosystems, 17(2), 470–484. https://doi.org/10.1002/2015GC006102 DOI: https://doi.org/10.1002/2015GC006102
Holtzman, B. K., & Kendall, J.-M. (2010). Organized melt, seismic anisotropy, and plate boundary lubrication. Geochem. Geophys. Geosyst., 11(12). https://doi.org/10.1029/2010GC003296 DOI: https://doi.org/10.1029/2010GC003296
Hopper, E., & Fischer, K. M. (2018). The Changing Face of the Lithosphere-Asthenosphere Boundary: Imaging Continental Scale Patterns in Upper Mantle Structure Across the Contiguous U.S. With Sp Converted Waves. Geochemistry, Geophysics, Geosystems, 19(8), 2593–2614. https://doi.org/10.1029/2018GC007476 DOI: https://doi.org/10.1029/2018GC007476
Humphreys, E. D., & Dueker, K. G. (1994). Physical state of the western U.S. upper mantle. J. Geophys. Res., 99(B5), 9635–9650. https://doi.org/10.1029/93JB02640 DOI: https://doi.org/10.1029/93JB02640
Humphreys, E. D., Schmandt, B., Bezada, M. J., & Perry-Houts, J. (2015). Recent craton growth by slab stacking beneath Wyoming. Earth and Planetary Science Letters, 429, 170–180. https://doi.org/10.1016/j.epsl.2015.07.066 DOI: https://doi.org/10.1016/j.epsl.2015.07.066
IRIS-DMC. (2011). Data Services Products: EMC, A repository of Earth models. https://doi.org/https://doi.org/10.17611/DP/EMC.1
Jackson, I., & Faul, U. H. (2010). Grainsize-sensitive viscoelastic relaxation in olivine: Towards a robust laboratory-based model for seismological application. Physics of the Earth and Planetary Interiors, 183(1), 151–163. https://doi.org/10.1016/j.pepi.2010.09.005 DOI: https://doi.org/10.1016/j.pepi.2010.09.005
Jin, G., & Gaherty, J. B. (2015). Surface wave phase-velocity tomography based on multichannel cross-correlation. Geophysical Journal International, 201(3), 1383–1398. https://doi.org/10.1093/gji/ggv079 DOI: https://doi.org/10.1093/gji/ggv079
Kanamori, H., & Anderson, D. L. (1977). Importance of physical dispersion in surface wave and free oscillation problems: Review. Reviews of Geophysics, 15(1), 105–112. https://doi.org/10.1029/RG015i001p00105 DOI: https://doi.org/10.1029/RG015i001p00105
Karato, S., & Jung, H. (1998). Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth and Planetary Science Letters, 157(3), 193–207. https://doi.org/10.1016/S0012-821X(98)00034-X DOI: https://doi.org/10.1016/S0012-821X(98)00034-X
Karato, S., Olugboji, T., & Park, J. (2015). Mechanisms and geologic significance of the mid-lithosphere discontinuity in the continents. Nature Geosci, 8(7), 509–514. https://doi.org/10.1038/ngeo2462 DOI: https://doi.org/10.1038/ngeo2462
Karato, S., & Wu, P. (1993). Rheology of the Upper Mantle: A Synthesis. Science, 260(5109), 771–778. https://doi.org/10.1126/science.260.5109.771 DOI: https://doi.org/10.1126/science.260.5109.771
Katz, R. F., Spiegelman, M., & Langmuir, C. H. (2003). A new parameterization of hydrous mantle melting. Geochemistry, Geophysics, Geosystems, 4(9). https://doi.org/10.1029/2002GC000433 DOI: https://doi.org/10.1029/2002GC000433
Kawakatsu, H., Kumar, P., Takei, Y., Shinohara, M., Kanazawa, T., Araki, E., & Suyehiro, K. (2009). Seismic Evidence for Sharp Lithosphere-Asthenosphere Boundaries of Oceanic Plates. Science, 324(5926), 499–502. https://doi.org/10.1126/science.1169499 DOI: https://doi.org/10.1126/science.1169499
Kind, R., Yuan, X., & Kumar, P. (2012). Seismic receiver functions and the lithosphere–asthenosphere boundary. Tectonophysics, 536–537, 25–43. https://doi.org/10.1016/j.tecto.2012.03.005 DOI: https://doi.org/10.1016/j.tecto.2012.03.005
Kumar, P., Kind, R., Yuan, X., & Mechie, J. (2012). USArray Receiver Function Images of the Lithosphere-Asthenosphere Boundary. Seismological Research Letters, 83(3), 486–491. https://doi.org/10.1785/gssrl.83.3.486 DOI: https://doi.org/10.1785/gssrl.83.3.486
Lekić, V., & Fischer, K. M. (2014). Contrasting lithospheric signatures across the western United States revealed by Sp receiver functions. Earth and Planetary Science Letters, 402, 90–98. https://doi.org/10.1016/j.epsl.2013.11.026 DOI: https://doi.org/10.1016/j.epsl.2013.11.026
Levander, A., Schmandt, B., Miller, M. S., Liu, K., Karlstrom, K. E., Crow, R. S., Lee, C.-T. A., & Humphreys, E. D. (2011). Continuing Colorado plateau uplift by delamination-style convective lithospheric downwelling. Nature, 472(7344), 461–465. https://doi.org/10.1038/nature10001 DOI: https://doi.org/10.1038/nature10001
Levander, Alan, & Miller, M. S. (2012). Evolutionary aspects of lithosphere discontinuity structure in the western U.S. Geochem. Geophys. Geosyst., 13(7). https://doi.org/10.1029/2012GC004056 DOI: https://doi.org/10.1029/2012GC004056
Lin, F.-C., & Ritzwoller, M. H. (2011). Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure. Geophysical Journal International, 186(3), 1104–1120. https://doi.org/10.1111/j.1365-246X.2011.05070.x DOI: https://doi.org/10.1111/j.1365-246X.2011.05070.x
Liu, T., & Shearer, P. M. (2021). Complicated Lithospheric Structure Beneath the Contiguous US Revealed by Teleseismic S-Reflections. Journal of Geophysical Research: Solid Earth, 125(5), e2020JB021624. https://doi.org/https://doi.org/10.1029/2020JB021624 DOI: https://doi.org/10.1029/2020JB021624
Ma, Z., Dalton, C. A., Russell, J. B., Gaherty, J. B., Hirth, G., & Forsyth, D. W. (2020). Shear attenuation and anelastic mechanisms in the central Pacific upper mantle. Earth and Planetary Science Letters, 536, 116148. https://doi.org/10.1016/j.epsl.2020.116148 DOI: https://doi.org/10.1016/j.epsl.2020.116148
Mallik, A., & Dasgupta, R. (2013). Reactive Infiltration of MORB-Eclogite-Derived Carbonated Silicate Melt into Fertile Peridotite at 3 GPa and Genesis of Alkalic Magmas. Journal of Petrology, 54(11), 2267–2300. https://doi.org/10.1093/petrology/egt047 DOI: https://doi.org/10.1093/petrology/egt047
Mark, H. F., Collins, J. A., Lizarralde, D., Hirth, G., Gaherty, J. B., Evans, R. L., & Behn, M. D. (2021). Constraints on the Depth, Thickness, and Strength of the G Discontinuity in the Central Pacific From S Receiver Functions. Journal of Geophysical Research: Solid Earth, 126(4), e2019JB019256. https://doi.org/10.1029/2019JB019256 DOI: https://doi.org/10.1029/2019JB019256
Masters, G., Woodhouse, J. H., & Freeman, G. (2011). Mineos v1.0.2. Computational infrastructure for geodynamics. https://doi.org/http://geoweb.cse.ucdavis.edu/cig/software/mineos/
McCarthy, C., Takei, Y., & Hiraga, T. (2011). Experimental study of attenuation and dispersion over a broad frequency range: 2. The universal scaling of polycrystalline materials. Journal of Geophysical Research: Solid Earth, 116(B9). https://doi.org/10.1029/2011JB008384 DOI: https://doi.org/10.1029/2011JB008384
Mehouachi, F., & Singh, S. C. (2018). Water-rich sublithospheric melt channel in the equatorial Atlantic Ocean. Nature Geosci, 11(1), 65–69. https://doi.org/10.1038/s41561-017-0034-z DOI: https://doi.org/10.1038/s41561-017-0034-z
Menke, W. (2012). Geophysical Data Analysis: Discrete Inverse Theory: MATLAB Edition. Academic Press.
Mirnejad, H., & Bell, K. (2006). Origin and Source Evolution of the Leucite Hills Lamproites: Evidence from Sr-Nd-Pb-O Isotopic Compositions. Journal of Petrology, 47(12), 2463–2489. https://doi.org/10.1093/petrology/egl051 DOI: https://doi.org/10.1093/petrology/egl051
Montagner, J.-P., & Anderson, D. L. (1989). Petrological constraints on seismic anisotropy. Physics of the Earth and Planetary Interiors, 54(1–2), 82–105. https://doi.org/10.1016/0031-9201(89)90189-1 DOI: https://doi.org/10.1016/0031-9201(89)90189-1
Olugboji, T. M., Karato, S., & Park, J. (2013). Structures of the oceanic lithosphere-asthenosphere boundary: Mineral-physics modeling and seismological signatures. Geochem. Geophys. Geosyst., 14(4), 880–901. https://doi.org/10.1002/ggge.20086 DOI: https://doi.org/10.1002/ggge.20086
Pakiser, L. C. (1963). Structure of the crust and upper mantle in the western United States. Journal of Geophysical Research (1896-1977), 68(20), 5747–5756. https://doi.org/10.1029/JZ068i020p05747 DOI: https://doi.org/10.1029/JZ068i020p05747
Pilet, S. (2015). Generation of low-silica alkaline lavas: Petrological constraints, models, and thermal implications. The Interdisciplinary Earth: A Volume in Honor of Don L. Anderson: Geological Society of America Special Paper 514 and American Geophysical Union Special Publication. https://doi.org/10.1130/2015.2514(17) DOI: https://doi.org/10.1130/2015.2514(17)
Pilet, S., Baker, M. B., & Stolper, E. M. (2008). Metasomatized Lithosphere and the Origin of Alkaline Lavas. Science, 320(5878), 916–919. https://doi.org/10.1126/science.1156563 DOI: https://doi.org/10.1126/science.1156563
Plank, T., & Forsyth, D. W. (2016). Thermal structure and melting conditions in the mantle beneath the Basin and Range province from seismology and petrology. Geochemistry, Geophysics, Geosystems, 17(4), 1312–1338. https://doi.org/10.1002/2015GC006205 DOI: https://doi.org/10.1002/2015GC006205
Porter, R. C., van der Lee, S., & Whitmeyer, S. J. (2019). Synthesizing EarthScope data to constrain the thermal evolution of the continental U.S. lithosphere. Geosphere, 15(6), 1722–1737. https://doi.org/10.1130/GES02000.1 DOI: https://doi.org/10.1130/GES02000.1
Porter, R., Liu, Y., & Holt, W. E. (2016). Lithospheric records of orogeny within the continental U.S. Geophysical Research Letters, 43(1), 144–153. https://doi.org/10.1002/2015GL066950 DOI: https://doi.org/10.1002/2015GL066950
Porter, R., & Reid, M. (2021). Mapping the Thermal Lithosphere and Melting Across the Continental US. Geophysical Research Letters, 48(7), e2020GL092197. https://doi.org/10.1029/2020GL092197 DOI: https://doi.org/10.1029/2020GL092197
Priestley, K., & McKenzie, D. (2006). The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters, 244(1), 285–301. https://doi.org/10.1016/j.epsl.2006.01.008 DOI: https://doi.org/10.1016/j.epsl.2006.01.008
Priestley, K., & McKenzie, D. (2013). The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle. Earth and Planetary Science Letters, 381, 78–91. https://doi.org/10.1016/j.epsl.2013.08.022 DOI: https://doi.org/10.1016/j.epsl.2013.08.022
Roy, M., Jordan, T. H., & Pederson, J. (2009). Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere. Nature, 459(7249), 978–982. https://doi.org/10.1038/nature08052 DOI: https://doi.org/10.1038/nature08052
Russell, J. B., Gaherty, J. B., Lin, P.-Y. P., Lizarralde, D., Collins, J. A., Hirth, G., & Evans, R. L. (2019). High-Resolution Constraints on Pacific Upper Mantle Petrofabric Inferred From Surface-Wave Anisotropy. Journal of Geophysical Research: Solid Earth, 124(1), 631–657. https://doi.org/10.1029/2018JB016598 DOI: https://doi.org/10.1029/2018JB016598
Rychert, C. A., Fischer, K. M., & Rondenay, S. (2005). A sharp lithosphere–asthenosphere boundary imaged beneath eastern North America. Nature, 436(7050), 542–545. https://doi.org/10.1038/nature03904 DOI: https://doi.org/10.1038/nature03904
Rychert, C. A., Rondenay, S., & Fischer, K. M. (2007). P-to-S and S-to-P imaging of a sharp lithosphere-asthenosphere boundary beneath eastern North America. Journal of Geophysical Research: Solid Earth, 112(B8). https://doi.org/10.1029/2006JB004619 DOI: https://doi.org/10.1029/2006JB004619
Saha, S., Peng, Y., Dasgupta, R., Mookherjee, M., & Fischer, K. M. (2021). Assessing the presence of volatile-bearing mineral phases in the cratonic mantle as a possible cause of mid-lithospheric discontinuities. Earth and Planetary Science Letters, 553, 116602. https://doi.org/10.1016/j.epsl.2020.116602 DOI: https://doi.org/10.1016/j.epsl.2020.116602
Sakamaki, T., Suzuki, A., Ohtani, E., Terasaki, H., Urakawa, S., Katayama, Y., Funakoshi, K., Wang, Y., Hernlund, J. W., & Ballmer, M. D. (2013). Ponded melt at the boundary between the lithosphere and asthenosphere. Nature Geosci, 6(12), 1041–1044. https://doi.org/10.1038/ngeo1982 DOI: https://doi.org/10.1038/ngeo1982
Sarafian, E., Gaetani, G. A., Hauri, E. H., & Sarafian, A. R. (2017). Experimental constraints on the damp peridotite solidus and oceanic mantle potential temperature. Science, 355(6328), 942–945. https://doi.org/10.1126/science.aaj2165 DOI: https://doi.org/10.1126/science.aaj2165
Schmandt, B., & Humphreys, E. (2011). Seismically imaged relict slab from the 55 Ma Siletzia accretion to the northwest United States. Geology, 39(2), 175–178. https://doi.org/10.1130/G31558.1 DOI: https://doi.org/10.1130/G31558.1
Schmandt, Brandon, & Humphreys, E. (2010). Complex subduction and small-scale convection revealed by body-wave tomography of the western United States upper mantle. Earth and Planetary Science Letters, 297(3), 435–445. https://doi.org/10.1016/j.epsl.2010.06.047 DOI: https://doi.org/10.1016/j.epsl.2010.06.047
Schmandt, Brandon, Lin, F.-C., & Karlstrom, K. E. (2015). Distinct crustal isostasy trends east and west of the Rocky Mountain Front. Geophysical Research Letters, 42(23), 10,290-10,298. https://doi.org/10.1002/2015GL066593 DOI: https://doi.org/10.1002/2015GL066593
Selway, K., Ford, H., & Kelemen, P. (2015). The seismic mid-lithosphere discontinuity. Earth and Planetary Science Letters, 414, 45–57. https://doi.org/10.1016/j.epsl.2014.12.029 DOI: https://doi.org/10.1016/j.epsl.2014.12.029
Shen, W., & Ritzwoller, M. H. (2016). Crustal and uppermost mantle structure beneath the United States. Journal of Geophysical Research: Solid Earth, 121(6), 4306–4342. https://doi.org/10.1002/2016JB012887 DOI: https://doi.org/10.1002/2016JB012887
Solomon, S. C. (1972). Seismic-wave attenuation and partial melting in the upper mantle of North America. J. Geophys. Res., 77(8), 1483–1502. https://doi.org/10.1029/JB077i008p01483 DOI: https://doi.org/10.1029/JB077i008p01483
Sparks, D. W., & Parmentier, E. M. (1991). Melt extraction from the mantle beneath spreading centers. Earth and Planetary Science Letters, 105(4), 368–377. https://doi.org/10.1016/0012-821X(91)90178-K DOI: https://doi.org/10.1016/0012-821X(91)90178-K
Stixrude, L., & Lithgow-Bertelloni, C. (2005). Mineralogy and elasticity of the oceanic upper mantle: Origin of the low-velocity zone. Journal of Geophysical Research: Solid Earth, 110(B3). https://doi.org/10.1029/2004JB002965 DOI: https://doi.org/10.1029/2004JB002965
Takei, Y. (2002). Effect of pore geometry on VP/VS: From equilibrium geometry to crack. Journal of Geophysical Research: Solid Earth, 107(B2), ECV 6-1-ECV 6-12. https://doi.org/10.1029/2001JB000522 DOI: https://doi.org/10.1029/2001JB000522
Takei, Y., & Holtzman, B. K. (2009). Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control model. Journal of Geophysical Research: Solid Earth, 114(B6). https://doi.org/10.1029/2008JB005850 DOI: https://doi.org/10.1029/2008JB005850
Tan, Y., & Helmberger, D. V. (2007). Trans-Pacific upper mantle shear velocity structure. Journal of Geophysical Research: Solid Earth, 112(B8). https://doi.org/10.1029/2006JB004853 DOI: https://doi.org/10.1029/2006JB004853
Thibault, Y., Edgar, A. D., & Lloyd, F. E. (1992). Experimental investigation of melts from a carbonated phlogopite lherzolite: Implications for metasomatism in the continental lithospheric mantle. American Mineralogist, 77(7–8), 784–794.
van Wijk, J. W., Baldridge, W. S., van Hunen, J., Goes, S., Aster, R., Coblentz, D. D., Grand, S. P., & Ni, J. (2010). Small-scale convection at the edge of the Colorado Plateau: Implications for topography, magmatism, and evolution of Proterozoic lithosphere. Geology, 38(7), 611–614. https://doi.org/10.1130/G31031.1 DOI: https://doi.org/10.1130/G31031.1
Walker, J. D., Bowers, T. D., Glazner, A. F., Famer, G. L., & and Carlson, R. (2004). Creation of a North American volcanic and plutonic rock data-base (NAVDAT). Geological Society of America Abstracts With Programs, 4(4), 9.
Wannamaker, P. E., Hasterok, D. P., Johnston, J. M., Stodt, J. A., Hall, D. B., Sodergren, T. L., Pellerin, L., Maris, V., Doerner, W. M., Groenewold, K. A., & Unsworth, M. J. (2008). Lithospheric dismemberment and magmatic processes of the Great Basin–Colorado Plateau transition, Utah, implied from magnetotellurics. Geochemistry, Geophysics, Geosystems, 9(5). https://doi.org/10.1029/2007GC001886 DOI: https://doi.org/10.1029/2007GC001886
Whitmeyer, S. J., & Karlstrom, K. E. (2007). Tectonic model for the Proterozoic growth of North America. Geosphere, 3(4), 220–259. https://doi.org/10.1130/GES00055.1 DOI: https://doi.org/10.1130/GES00055.1
Wirth, E. A., & Long, M. D. (2014). A contrast in anisotropy across mid-lithospheric discontinuities beneath the central United States—A relic of craton formation. Geology, 42(10), 851–854. https://doi.org/10.1130/G35804.1 DOI: https://doi.org/10.1130/G35804.1
Xie, J., Chu, R., & Yang, Y. (2018). 3-D Upper-Mantle Shear Velocity Model Beneath the Contiguous United States Based on Broadband Surface Wave from Ambient Seismic Noise. Pure and Applied Geophysics, 175. https://doi.org/10.1007/s00024-018-1881-2 DOI: https://doi.org/10.1007/s00024-018-1881-2
Yamauchi, H., & Takei, Y. (2016). Polycrystal anelasticity at near-solidus temperatures. Journal of Geophysical Research: Solid Earth, 121(11), 7790–7820. https://doi.org/10.1002/2016JB013316 DOI: https://doi.org/10.1002/2016JB013316
Yamauchi, H., & Takei, Y. (2020). Application of a Premelting Model to the Lithosphere-Asthenosphere Boundary. Geochemistry, Geophysics, Geosystems, 21(11), e2020GC009338. https://doi.org/10.1029/2020GC009338 DOI: https://doi.org/10.1029/2020GC009338
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Joseph Byrnes, James Gaherty, Emily Hopper

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
National Science Foundation
Grant numbers EAR 1853296 -
National Science Foundation
Grant numbers EAR 204526