The 1804 Alborán seismic series: Search for the source using seismic scenarios and static stress interactions

Authors

  • Yolanda de Pro Díaz Universidad Complutense de Madrid
  • José Jesús Martínez Díaz
  • Carolina Canora Catalán

DOI:

https://doi.org/10.26443/seismica.v4i2.1493

Keywords:

1804 Alborán earthquake, seismic scenario, Coulomb stress transfer, earthquake source, intensity data

Abstract

Linking historical earthquakes with the faults that caused them is crucial for seismic hazard assessment. Historical documentation describing the effects of an earthquake is a useful information source, from which we can compile the observed intensity field of the earthquake. In this work, we use intensity data from the catastrophic 1804 Alborán earthquake (south of Iberia) along with intensity simulations and coseismic stress transfer analysis to search for this earthquake's seismic source. We build intensity simulations for each fault proposed as a potential source, and compare these simulations with the intensity field. We also propose the possibility of the Alborán 1804 earthquake triggering the Dalías earthquake (European macroseismic intensity (IEMS-98) IX), which occurred seven months after, and analyze stress transfer between the possible sources of both earthquakes. Our results point to a conjunct rupture of the northern Al-Idrissi Fault segment and the North–South Faults as the most likely source for the Alborán earthquake.

References

Abrahamson, N. A., Silva, W. J., & Kamai, R. (2014). Update of the AS08 Ground-Motion Prediction equations based on the NGA-west2 data set. Pacific Engineering Research Center Report, May, 174. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Update+of+the+AS08+Ground-Motion+Prediction+Equations+Based+on+the+NGA-West2+Data+Set#0

Akkar, S., & Bommer, J. J. (2010). Empirical Equations for the Prediction of PGA, PGV, and Spectral Accelerations in Europe, the Mediterranean Region, and the Middle East. Seismological Research Letters, 81(2), 195–206. https://doi.org/10.1785/gssrl.81.2.195

Akkar, S., Sandıkkaya, M. A., & Bommer, J. J. (2013). Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bulletin of Earthquake Engineering, 12(1), 359–387. https://doi.org/10.1007/s10518-013-9461-4

Allen, T. I., & Wald, D. J. (2007). Topographic Slope as a Proxy for Seismic Site-Conditions (VS30) and Amplification Around the Globe. In Open-File Report. US Geological Survey. https://doi.org/10.3133/ofr20071357

Álvarez-Gómez, José A., Herrero-Barbero, P., & Martínez-Díaz, J. J. (2023). Seismogenic potential and tsunami threat of the strike-slip Carboneras fault in the western Mediterranean from physics-based earthquake simulations. Natural Hazards and Earth System Sciences, 23(6), 2031–2052. https://doi.org/10.5194/nhess-23-2031-2023

Álvarez-Gómez, Jose Antonio, Martín, R., Pérez-López, R., Stich, D., Cantavella, J. V., Martínez-Díaz, J. J., Morales Soto, J., Martínez-García, P., Soto, J. I., & Carreño, E. (2016). La serie sísmica de Alhucemas 2016. Partición de la deformación e interacción de estructuras en un límite de placas difuso. Geo-Temas, 16(2), 491–494.

Ambraseys, & Jackson. (1998). Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region. Geophysical Journal International, 133(2), 390–406. https://doi.org/10.1046/j.1365-246x.1998.00508.x

Ambraseys, N. N., Douglas, J., Sarma, S. K., & Smit, P. M. (2005). Equations for the Estimation of Strong Ground Motions from Shallow Crustal Earthquakes Using Data from Europe and the Middle East: Horizontal Peak Ground Acceleration and Spectral Acceleration. Bulletin of Earthquake Engineering, 3(1), 1–53. https://doi.org/10.1007/s10518-005-0183-0

Ammar, A., Mauffret, A., Gorini, C., & Jabour, H. (2007). The Tectonic Structure Of The Alboran Margin Of Morocco. Revista de La Sociedad Geológica de España, 20(3–4), 247–271.

Atkinson, G. M., & Kaka, S. I. (2007). Relationships between Felt Intensity and Instrumental Ground Motion in the Central United States and California. Bulletin of the Seismological Society of America, 97(2), 497–510. https://doi.org/10.1785/0120060154

Atkinson, G. M., & Wald, D. J. (2007). “Did You Feel It?” Intensity Data: A Surprisingly Good Measure of Earthquake Ground Motion. Seismological Research Letters, 78(3), 362–368. https://doi.org/10.1785/gssrl.78.3.362

Bakun, W. H., & Wentworth, C. M. (1997). Estimating earthquake location and magnitude from seismic intensity data. Bulletin of the Seismological Society of America, 87(6), 1502–1521. https://doi.org/10.1785/BSSA0870061502

Basili, R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano, S., Tiberti, M. M., & Boschi, E. (2008). The Database of Individual Seismogenic Sources (DISS), version 3: Summarizing 20 years of research on Italy’s earthquake geology. Tectonophysics, 453(1–4), 20–43. https://doi.org/10.1016/j.tecto.2007.04.014

Bozorgnia, Y., Abrahamson, N. A., Atik, L. A., Ancheta, T. D., Atkinson, G. M., Baker, J. W., Baltay, A., Boore, D. M., Campbell, K. W., Chiou, B. S.-J., Darragh, R., Day, S., Donahue, J., Graves, R. W., Gregor, N., Hanks, T., Idriss, I. M., Kamai, R., Kishida, T., … Youngs, R. (2014). NGA-West2 Research Project. Earthquake Spectra, 30(3), 973–987. https://doi.org/10.1193/072113eqs209m

Campbell, K. W. (2003). Prediction of Strong Ground Motion Using the Hybrid Empirical Method and Its Use in the Development of Ground-Motion (Attenuation) Relations in Eastern North America. Bulletin of the Seismological Society of America, 93(3), 1012–1033. https://doi.org/10.1785/0120020002

Campbell, Kenneth W., & Bozorgnia, Y. (2014). NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra. Earthquake Spectra, 30(3), 1087–1115. https://doi.org/10.1193/062913eqs175m

Canari, A., Perea, H., & Martínez-Loriente, S. (2024). Characterizing an Incipient Transtensional Fault System: Insights from the Morphometric Analysis of the North-South Faults (Alboran Sea). https://doi.org/10.22541/essoar.173153134.46086157/v1

Canora, C., Martinez-Diaz, J. J., Villamor, P., Berryman, K., Alvarez-Gomez, J. A., Pullinger, C., & Capote, R. (2010). Geological and Seismological Analysis of the 13 February 2001 Mw 6.6 El Salvador Earthquake: Evidence for Surface Rupture and Implications for Seismic Hazard. Bulletin of the Seismological Society of America, 100(6), 2873–2890. https://doi.org/10.1785/0120090377

Canora, Carolina, Vilanova, S. P., De Pro-Diáz, Y., Pina, P., & Heleno, S. (2021). Evidence of Surface Rupture Associated With Historical Earthquakes in the Lower Tagus Valley, Portugal. Implications for Seismic Hazard in the Greater Lisbon Area. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.620778

Caprio, M., Tarigan, B., Worden, C. B., Wiemer, S., & Wald, D. J. (2015). Ground Motion to Intensity Conversion Equations (GMICEs): A Global Relationship and Evaluation of Regional Dependency. Bulletin of the Seismological Society of America, 105(3), 1476–1490. https://doi.org/10.1785/0120140286

Caputo, R., Sboras, S., Pavlides, S., & Chatzipetros, A. (2015). Comparison between single-event effects and cumulative effects for the purpose of seismic hazard assessment. A review from Greece. Earth-Science Reviews, 148, 94–120. https://doi.org/10.1016/j.earscirev.2015.05.004

d’Acremont, E., Gutscher, M.-A., Rabaute, A., Mercier de Lépinay, B., Lafosse, M., Poort, J., Ammar, A., Tahayt, A., Le Roy, P., Smit, J., Do Couto, D., Cancouët, R., Prunier, C., Ercilla, G., & Gorini, C. (2014). High-resolution imagery of active faulting offshore Al Hoceima, Northern Morocco. Tectonophysics, 632, 160–166. https://doi.org/10.1016/j.tecto.2014.06.008

De Larouzière, F. D., Bolze, J., Bordet, P., Hernandez, J., Montenat, C., & Ott d’Estevou, P. (1988). The Betic segment of the lithospheric Trans-Alboran shear zone during the Late Miocene. Tectonophysics, 152(1–2), 41–52. https://doi.org/10.1016/0040-1951(88)90028-5

de Pro-Díaz, Y., Perea, H., Insua-Arévalo, J. M., Martínez-Díaz, J. J., & Canora, C. (2023). Constraining earthquake fault sources through the use of intensity data and seismic scenarios: application to the Betic Cordillera (South Spain). Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1214836

de Pro-Díaz, Y., Vilanova, S., & Canora, C. (2022). Ranking Earthquake Sources Using Spatial Residuals of Seismic Scenarios: Methodology Application to the 1909 Benavente Earthquake. Bulletin of the Seismological Society of America, 113(2), 710–731. https://doi.org/10.1785/0120220067

Delavaud, E., Scherbaum, F., Kuehn, N., & Riggelsen, C. (2009). Information-Theoretic Selection of Ground-Motion Prediction Equations for Seismic Hazard Analysis: An Applicability Study Using Californian Data. Bulletin of the Seismological Society of America, 99(6), 3248–3263. https://doi.org/10.1785/0120090055

DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1–80. https://doi.org/10.1111/j.1365-246x.2009.04491.x

Echeverria, A., Khazaradze, G., Asensio, E., & Masana, E. (2015). Geodetic evidence for continuing tectonic activity of the Carboneras fault (SE Spain). Tectonophysics, 663, 302–309. https://doi.org/10.1016/j.tecto.2015.08.009

Espinar Moreno, M. (1994). Los estudios de sismicidad histórica en Andalucía: los terremotos históricos de la provincia de Almería. In El estudio de los terremotos en Almería (pp. 115–180). https://dialnet.unirioja.es/servlet/articulo?codigo=2767758

Estrada, F., Galindo‐Zaldívar, J., Vázquez, J. T., Ercilla, G., D’Acremont, E., Alonso, B., & Gorini, C. (2017). Tectonic indentation in the central Alboran Sea (westernmost Mediterranean). Terra Nova, 30(1), 24–33. https://doi.org/10.1111/ter.12304

Ferrater, M., Ortuño, M., Masana, E., Martínez-Díaz, J. J., Pallàs, R., Perea, H., Baize, S., García-Meléndez, E., Echeverria, A., Rockwell, T., Sharp, W. D., & Arrowsmith, R. (2017). Lateral slip rate of Alhama de Murcia fault (SE Iberian Peninsula) based on a morphotectonic analysis: Comparison with paleoseismological data. Quaternary International, 451, 87–100. https://doi.org/10.1016/j.quaint.2017.02.018

Ferrater, M., Ortuño, M., Masana, E., Pallàs, R., Perea, H., Baize, S., García-Meléndez, E., Martínez-Díaz, J. J., Echeverria, A., Rockwell, T. K., Sharp, W. D., Medialdea, A., & Rhodes, E. J. (2016). Refining seismic parameters in low seismicity areas by 3D trenching: The Alhama de Murcia fault, SE Iberia. Tectonophysics, 680, 122–128. https://doi.org/10.1016/j.tecto.2016.05.020

Fracassi, U., & Valensise, G. (2007). Unveiling the Sources of the Catastrophic 1456 Multiple Earthquake: Hints to an Unexplored Tectonic Mechanism in Southern Italy. Bulletin of the Seismological Society of America, 97(3), 725–748. https://doi.org/10.1785/0120050250

García-Mayordomo, J., Insua-Arévalo, J. M., Martínez-Díaz, J. J., Jiménez-Díaz, A., Martín-Banda, R., Martín-Alfageme, S., Álvarez-Gómez, J. A., Rodríguez-Peces, M., Pérez-López, R., Rodríguez-Pascua, M. A., Masana, E., Perea, H., Martín-González, F., Giner-Robles, J., Nemser, E. S., Cabral, J., & The_QAFI_Compilers_Working_Group. (2012). The Quaternary Active Faults Database of Iberia (QAFI v.2.0). Journal of Iberian Geology, 38(1). https://doi.org/10.5209/rev_jige.2012.v38.n1.39219

Gasperini, P., Vannucci, G., Tripone, D., & Boschi, E. (2010). The Location and Sizing of Historical Earthquakes Using the Attenuation of Macroseismic Intensity with Distance. Bulletin of the Seismological Society of America, 100(5A), 2035–2066. https://doi.org/10.1785/0120090330

Gasperini, Paolo, Bernardini, F., Valensise, G., & Boschi, E. (1999). Defining seismogenic sources from historical earthquake felt reports. Bulletin of the Seismological Society of America, 89(1), 94–110. https://doi.org/10.1785/bssa0890010094

Goded, T., Horspool, N., Canessa, S., & Gerstenberger, M. (2017). Modified Mercalli intensities for the M7.8 Kaikōura (New Zealand) 14 November 2016 earthquake derived from ‘felt detailed’ and ‘felt rapid’ online questionnaires. Bulletin of the New Zealand Society for Earthquake Engineering, 50(2), 352–362. https://doi.org/10.5459/bnzsee.50.2.352-362

Gómez de la Peña, L., Gràcia, E., Maesano, F. E., Basili, R., Kopp, H., Sánchez-Serra, C., Scala, A., Romano, F., Volpe, M., Piatanesi, A., & R. Ranero, C. (2022). A first appraisal of the seismogenic and tsunamigenic potential of the largest fault systems in the westernmost Mediterranean. Marine Geology, 445, 106749. https://doi.org/10.1016/j.margeo.2022.106749

Gomez-Capera, A. A., Rovida, A., Gasperini, P., Stucchi, M., & Viganò, D. (2014). The determination of earthquake location and magnitude from macroseismic data in Europe. Bulletin of Earthquake Engineering, 13(5), 1249–1280. https://doi.org/10.1007/s10518-014-9672-3

Gómez-Novell, O., García-Mayordomo, J., Ortuño, M., Masana, E., & Chartier, T. (2020). Fault System-Based Probabilistic Seismic Hazard Assessment of a Moderate Seismicity Region: The Eastern Betics Shear Zone (SE Spain). Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.579398

Gràcia, E., Bartolome, R., Lo Iacono, C., Moreno, X., Stich, D., Martínez-Diaz, J. J., Bozzano, G., Martínez-Loriente, S., Perea, H., Diez, S., Masana, E., Dañobeitia, J. J., Tello, O., Sanz, J. L., & Carreño, E. (2012). Acoustic and seismic imaging of the Adra Fault (NE Alboran Sea): in search of the source of the 1910 Adra earthquake. Natural Hazards and Earth System Sciences, 12(11), 3255–3267. https://doi.org/10.5194/nhess-12-3255-2012

Gràcia, E., Pallàs, R., Soto, J. I., Comas, M., Moreno, X., Masana, E., Santanach, P., Diez, S., García, M., Dañobeitia, J., Bartolomé, R., Farrán, M., Gómez, M., Alpiste, M. J. R., Lastras, G., Wilmott, V., Perea, H., Blondel, P., Gómez, O., & Roque, C. (2006). Active faulting offshore SE Spain (Alboran Sea): Implications for earthquake hazard assessment in the Southern Iberian Margin. Earth and Planetary Science Letters, 241(3–4), 734–749. https://doi.org/10.1016/j.epsl.2005.11.009

Gràcia, Eulàlia, Grevemeyer, I., Bartolomé, R., Perea, H., Martínez-Loriente, S., Gómez de la Peña, L., Villaseñor, A., Klinger, Y., Lo Iacono, C., Diez, S., Calahorrano, A., Camafort, M., Costa, S., d’Acremont, E., Rabaute, A., & Ranero, C. R. (2019). Earthquake crisis unveils the growth of an incipient continental fault system. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-11064-5

Griffin, J., Nguyen, N., Cummins, P., & Cipta, A. (2018). Historical Earthquakes of the Eastern Sunda Arc: Source Mechanisms and Intensity‐Based Testing of Indonesia’s National Seismic Hazard Assessment. Bulletin of the Seismological Society of America, 109(1), 43–65. https://doi.org/10.1785/0120180085

Grünthal, G. (1998). European Macroseismic Scale 1998 (Vol. 15). http://lib.riskreductionafrica.org/bitstream/handle/123456789/1193/1281.European

Hamling, I. J. (2019). A review of the 2016 Kaikōura earthquake: insights from the first 3 years. Journal of the Royal Society of New Zealand, 50(2), 226–244. https://doi.org/10.1080/03036758.2019.1701048

Harris, R. A. (1998). Introduction to Special Section: Stress Triggers, Stress Shadows, and Implications for Seismic Hazard. Journal of Geophysical Research: Solid Earth, 103(B10), 24347–24358. https://doi.org/10.1029/98jb01576

Herrero Barbero, P. (2021). Modelización 3D de la estructura, la cinemática y el comportamiento sismogénico del sistema de fallas de las Béticas Orientales. Aplicación a la amenaza sísmica. Universidad Complutense de Madrid.

Herrero‐Barbero, P., Álvarez‐Gómez, J. A., Williams, C., Villamor, P., Insua‐Arévalo, J. M., Alonso‐Henar, J., & Martínez‐Díaz, J. J. (2021). Physics‐Based Earthquake Simulations in Slow‐Moving Faults: A Case Study From the Eastern Betic Shear Zone (SE Iberian Peninsula). Journal of Geophysical Research: Solid Earth, 126(5). https://doi.org/10.1029/2020jb021133

Hough, S. E., & Graves, R. W. (2020). The 1933 Long Beach Earthquake (California, USA): Ground Motions and Rupture Scenario. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-66299-w

Huerta, P., Silva, P. G., Giner-Robles, J. L., Rodríguez-Pascua, M. A., & Bautista Davila, M. B. (2015). Efectos geológicos del terremoto de Dalías-Berja 1804 AD. Almería, SE España). XIV Reunión Nacional de Cuaternario, 1, 194–197.

ICN-UGM. (2013). Actualización de mapas de peligrosidad sísmica de España 2012 (Vol. 267, p. 272). https://doi.org/10.7419/162.05.2017

Instituto Geográfico Nacional (IGN). (2024). Catálogo de tsunamis en las costas españolas. https://doi.org/10.7419/162.04.2023

Insua-Arevalo, J. M., Garcia-Mayordomo, J., Salazar, A. E., Rodriguez-Escudero, E., Martin-Banda, R., Alvarez-Gomez, J. A., Canora, C., & Martinez-Diaz, J. J. (2015). Paleoseismological evidence of holocene activity of the Los Tollos Fault (Murcia, SE Spain): A lately formed quaternary tectonic feature of the eastern betic shear zone. Journal of Iberian Geology, 41(3). https://doi.org/10.5209/rev_JIGE.2015.v41.n3.49948

Kaiser, A., Balfour, N., Fry, B., Holden, C., Litchfield, N., Gerstenberger, M., D’Anastasio, E., Horspool, N., McVerry, G., Ristau, J., Bannister, S., Christophersen, A., Clark, K., Power, W., Rhoades, D., Massey, C., Hamling, I., Wallace, L., Mountjoy, J., … Gledhill, K. (2017). The 2016 Kaikōura, New Zealand, Earthquake: Preliminary Seismological Report. Seismological Research Letters, 88(3), 727–739. https://doi.org/10.1785/0220170018

Kaka, S. L. I., & Atkinson, G. M. (2004). Relationships between Instrumental Ground-Motion Parameters and Modified Mercalli Intensity in Eastern North America. Bulletin of the Seismological Society of America, 94(5), 1728–1736. https://doi.org/10.1785/012003228

King, G. C. P., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935–953. https://doi.org/10.1785/BSSA0840030935

Lafosse, M., d’Acremont, E., Rabaute, A., Estrada, F., Jollivet-Castelot, M., Vazquez, J. T., Galindo-Zaldivar, J., Ercilla, G., Alonso, B., Smit, J., Ammar, A., & Gorini, C. (2020). Plio-Quaternary tectonic evolution of the southern margin of the Alboran Basin (Western Mediterranean). Solid Earth, 11(2), 741–765. https://doi.org/10.5194/se-11-741-2020

Lozano, L., Buforn, E., Vicente Cantavella, J., López-Sánchez, C., Victoria Manzanedo, M., Barco, J., Antón, R., Cabieces, R., & Mattesini, M. (2025). Relocation of Recent Shallow Seismic Activity in the Alboran Sea (Western Mediterranean Sea): The 2021–2024, 2016, and 2004 Seismic Series. Bulletin of the Seismological Society of America, 115(2), 469–488. https://doi.org/10.1785/0120240159

Lozos, J. C. (2016). A case for historic joint rupture of the San Andreas and San Jacinto faults. Science Advances, 2(3). https://doi.org/10.1126/sciadv.1500621

Marín-Lechado, C., Galindo-Zaldívar, J., Gil, A. J., Borque, M. J., De Lacy, M. C., Pedrera, A., López-Garrido, A. C., Alfaro, P., García-Tortosa, F., Ramos, M. I., Rodríguez-Caderot, G., Rodríguez-Fernández, J., Ruiz-Constán, A., & De Galdeano-Equiza, C. S. (2010). Levelling Profiles and a GPS Network to Monitor the Active Folding and Faulting Deformation in the Campo de Dalias (Betic Cordillera, Southeastern Spain). Sensors, 10(4), 3504–3518. https://doi.org/10.3390/s100403504

Marín-Lechado, C., Galindo-Zaldívar, J., Rodríguez-Fernández, L. R., Serrano, I., & Pedrera, A. (2005). Active faults, seismicity and stresses in an internal boundary of a tectonic arc (Campo de Dalías and Níjar, southeastern Betic Cordilleras, Spain). Tectonophysics, 396(1–2), 81–96. https://doi.org/10.1016/j.tecto.2004.11.001

Martín‐Banda, R., García‐Mayordomo, J., Insua‐Arévalo, J. M., Salazar, Á. E., Rodríguez‐Escudero, E., Álvarez‐Gómez, J. A., Medialdea, A., & Herrero, M. J. (2016). New insights on the seismogenic potential of the Eastern Betic Shear Zone (SE Iberia): Quaternary activity and paleoseismicity of the SW segment of the Carrascoy Fault Zone. Tectonics, 35(1), 55–75. https://doi.org/10.1002/2015tc003997

Martínez Solares, J. M., & Mezcua Rodríguez, J. (2002). Catálogo sísmico de la Península Ibérica (880 a. C.

Martínez-Díaz, J.J. (1999). Neotectónica y Tectónica Activa del Sector Centro-Occidental de la Región de Murcia y Sur de Almería (Cordillera Bética - España. Universidad Complutense de Madrid.

Martínez-Díaz, J.J., Masana, E., & Ortuño, M. (2012). Active tectonics of the Alhama de Murcia fault, Betic Cordillera, Spain. Journal of Iberian Geology, 38(1). https://doi.org/10.5209/rev_jige.2012.v38.n1.39218

Martínez-Díaz, José J., & Hernández-Enrile, J. L. (2004). Neotectonics and morphotectonics of the southern Almería region (Betic Cordillera-Spain) kinematic implications. International Journal of Earth Sciences, 93(2), 189–206. https://doi.org/10.1007/s00531-003-0379-y

Martínez‐García, P., Comas, M., Soto, J. I., Lonergan, L., & Watts, A. B. (2013). Strike-slip tectonics and basin inversion in the Western Mediterranean: The Post-Messinian evolution of the Alboran Sea. Basin Research, 25(4), 361–387. https://doi.org/10.1111/bre.12005

Martínez-García, P., Soto, J. I., & Comas, M. (2011). Recent structures in the Alboran Ridge and Yusuf fault zones based on swath bathymetry and sub-bottom profiling: evidence of active tectonics. Geo-Marine Letters, 31(1), 19–36. https://doi.org/10.1007/s00367-010-0212-0

Martínez-Martínez, J. M. (2006). Lateral interaction between metamorphic core complexes and less-extended, tilt-block domains: the Alpujarras strike-slip transfer fault zone (Betics, SE Spain). Journal of Structural Geology, 28(4), 602–620. https://doi.org/10.1016/j.jsg.2006.01.012

Massey, F. J. (1951). The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association, 46(253), 68–78. https://doi.org/10.1080/01621459.1951.10500769

McCalpin, J. P., & Nelson, A. R. (1996). Introduction to Paleoseismology. In J. P. McCalpin (Ed.), Paleoseismology (Vol. 62, pp. 1–20). Academic Press.

Mezcua, J., Rueda, J., & Garcia Blanco, R. M. (2013). Iberian Peninsula Historical Seismicity Revisited: An Intensity Data Bank. Seismological Research Letters, 84(1), 9–18. https://doi.org/10.1785/0220120097

Michetti, A. M., Esposito, E., Guerrieri, L., Porfido, S., Serva, L., Tatevossian, R., Vittori, E., Audemard, F., Azuma, T., Clague, J., Comerci, V., Gürpinar, A., McCalpin, J., Mohammadioun, B., Mörner, N. A., Ota, Y., & Roghozin, E. (2007). INQUA Environmental Seismic Intensity Scale 2007 (ESI-2007. In L. Guerrieri & E. Vittori (Eds.), Servizio Geológico d’Italia - Dipartamento Difensa del Suolo.

Molina, S., Navarro, M., Martínez-Pagan, P., Pérez-Cuevas, J., Vidal, F., Navarro, D., & Agea-Medina, N. (2018). Potential damage and losses in a repeat of the 1910 Adra (Southern Spain) earthquake. Natural Hazards, 92(3), 1547–1571. https://doi.org/10.1007/s11069-018-3263-6

Molins-Vigatà, J., García-Mayordomo, J., Ortuño, M., García-Sellés, D., & Gómez-Novell, O. (2022). Caracterización geológica de la falla del Llano del Águila en Campo Dalías (Almería): posible fuente sismogénica del terremoto de 1804. Revista de La Sociedad Geológica de España, 35(1), 71–83. https://doi.org/10.55407/rsge.94908

Moreno Mota, X. (2011). Neotectonic and Paleoseismic onshore-offshore integrated study of the Carboneras Fault. SE Iberia). Universitat de Barcelona.

Moreno, X., Gràcia, E., Bartolomé, R., Martínez-Loriente, S., Perea, H., de la Peña, L. G., Iacono, C. L., Piñero, E., Pallàs, R., Masana, E., & Dañobeitia, J. J. (2016). Seismostratigraphy and tectonic architecture of the Carboneras Fault offshore based on multiscale seismic imaging: Implications for the Neogene evolution of the NE Alboran Sea. Tectonophysics, 689, 115–132. https://doi.org/10.1016/j.tecto.2016.02.018

Moreno, X., Masana, E., Pallàs, R., Gràcia, E., Rodés, Á., & Bordonau, J. (2015). Quaternary tectonic activity of the Carboneras Fault in the La Serrata range (SE Iberia): Geomorphological and chronological constraints. Tectonophysics, 663, 78–94. https://doi.org/10.1016/j.tecto.2015.08.016

Muñoz Clares, M., Fernández Carrascosa, M., Alcolea López, M. O., Arcas Navarro, M. C., Arcas Ruiz, N., Vas, P., Cruz López, M. T., García Poveda, M., García Valera, M. A., Llamas Martínez, B., & Ruiz Llanes, A. E. (2012). Sismicidad histórica y documentación municipal: El caso de Lorca. Boletin Geologico y Minero, 123(4), 415–429.

Murphy Corella, P. (2019). Los terremotos de Almería de 1804 en el archivo histórico nacional. Instituto Geográfico Nacional. https://www.ign.es/web/libros-digitales/terremotos-almeria-1804

Nocquet, J.-M., & Calais, E. (2004). Geodetic Measurements of Crustal Deformation in the Western Mediterranean and Europe. Pure and Applied Geophysics, 161(3), 661–681. https://doi.org/10.1007/s00024-003-2468-z

Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018–1040. https://doi.org/10.1785/bssa0820021018

Ortuno, M., Masana, E., Garcia-Melendez, E., Martinez-Diaz, J., Stepancikova, P., Cunha, P. P., Sohbati, R., Canora, C., Buylaert, J.-P., & Murray, A. S. (2012). An exceptionally long paleoseismic record of a slow-moving fault: The Alhama de Murcia fault (Eastern Betic shear zone, Spain). Geological Society of America Bulletin, 124(9–10), 1474–1494. https://doi.org/10.1130/b30558.1

Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., Henshaw, P., Butler, L., Nastasi, M., Panzeri, L., Simionato, M., & Vigano, D. (2014). OpenQuake Engine: An Open Hazard (and Risk) Software for the Global Earthquake Model. Seismological Research Letters, 85(3), 692–702. https://doi.org/10.1785/0220130087

Palano, M., González, P. J., & Fernández, J. (2015). The Diffuse Plate boundary of Nubia and Iberia in the Western Mediterranean: Crustal deformation evidence for viscous coupling and fragmented lithosphere. Earth and Planetary Science Letters, 430, 439–447. https://doi.org/10.1016/j.epsl.2015.08.040

Pedrera, A., Marín-Lechado, C., Stich, D., Ruiz-Constán, A., Galindo-Zaldívar, J., Rey-Moral, C., & de Lis Mancilla, F. (2012). Nucleation, linkage and active propagation of a segmented Quaternary normal-dextral fault: the Loma del Viento fault (Campo de Dalías, Eastern Betic Cordillera, SE Spain). Tectonophysics, 522–523, 208–217. https://doi.org/10.1016/j.tecto.2011.12.001

Perea, H., Roldán, J. L., Sánchez-Lozano, L., Álvarez-Gómez, J. A., Herrero-Barbero1, P., Jiménez4, M. J., Martínez-Loriente2, S., C., A., & L, J. (2022). Serie sísmica del sur del Mar de Alborán del 2021-2022: relocalización de los eventos e implicaciones sismotectónicas. In IV Reunión Ibérica Sobre Fallas Activas y Paleosismología (pp. 141–144).

Perea, Hector. (2009). The Catalan seismic crisis (1427 and 1428; NE Iberian Peninsula): Geological sources and earthquake triggering. Journal of Geodynamics, 47(5), 259–270. https://doi.org/10.1016/j.jog.2009.01.002

Perea, Hector, Gràcia, E., Martínez-Loriente, S., Bartolome, R., de la Peña, L. G., de Mol, B., Moreno, X., Iacono, C. L., Diez, S., Tello, O., Gómez-Ballesteros, M., & Dañobeitia, J. J. (2018). Kinematic analysis of secondary faults within a distributed shear-zone reveals fault linkage and increased seismic hazard. Marine Geology, 399, 23–33. https://doi.org/10.1016/j.margeo.2018.02.002

Pezeshk, S., Zandieh, A., Campbell, K. W., & Tavakoli, B. (2018). Ground‐Motion Prediction Equations for Central and Eastern North America Using the Hybrid Empirical Method and NGA‐West2 Empirical Ground‐Motion Models. Bulletin of the Seismological Society of America, 108(4), 2278–2304. https://doi.org/10.1785/0120170179

Posadas, A., Vidal, F., & Navarro, M. (2006). The M = 6.3 Earthquake of January 13 (1804) in Motril (Spain. Proceedings of the First Europen Conference on Earthquake Engineering and Seismology, 91, 1–8.

Quirós Hernández, L. E. (2017). Modelizaciones y análisis de sensibilidad en la evaluación integral del riesgo sísmico a escala urbana. Aplicación a la ciudad de Lorca [Tesis Doctoral]. Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros Industriales.

Rodríguez-Pascua, M. A., Silva, P. G., Perucha, M. A., Robles, J. L. G., Elez, J., & Roquero, E. (2017). El escenario sísmico del terremoto de Arenas del Rey de 1884. In IX Reunião Do Quaternário Ibérico (pp. 49–52).

Sanz de Galdeano, C., Azañón, J. M., Cabral, J., Ruano, P., Alfaro, P., Canora, C., Ferrater, M., García Tortosa, F. J., García‑Mayordomo, J., Gràcia, E., Insua‑Arévalo, J. M., Jiménez Bonilla, A., Lacan, P. G., Marín‑Lechado, C., Martín‑Banda, R., Martín González, F., Martínez‑Díaz, J. J., Martín‑Rojas, I., Masana, E., & … Simón, J. L. (2020). Active faults in Iberia. In C. Sanz de Galdeano & J. A. Vera (Eds.), The Geology of Iberia: A Geodynamic Approach. Volume 5: Active Processes: Seismicity, Active Faulting and Relief (pp. 33–75). Cambridge University Press.

Sanz de Galdeano, C. S., Rodriguez-Fernandez, J., & Lopez-Garrido, A. C. (1985). A strike-slip fault corridor within the Alpujarra Mountains (Betic Cordilleras, Spain). Geologische Rundschau, 74(3), 641–655. https://doi.org/10.1007/bf01821218

Serpelloni, E., Vannucci, G., Pondrelli, S., Argnani, A., Casula, G., Anzidei, M., Baldi, P., & Gasperini, P. (2007). Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophysical Journal International, 169(3), 1180–1200. https://doi.org/10.1111/j.1365-246x.2007.03367.x

Silva, Pablo G., Elez, J., Pérez-López, R., Giner-Robles, J. L., Gómez-Diego, P. V., Roquero, E., Rodríguez-Pascua, M. Á., & Bardají, T. (2023). The AD 1755 Lisbon Earthquake-Tsunami: Seismic source modelling from the analysis of ESI-07 environmental data. Quaternary International, 651, 6–24. https://doi.org/10.1016/j.quaint.2021.11.006

Silva, P.G., Elez, J., Giner-Robles, J. L., Rodríguez-Pascua, M. A., Pérez-López, R., Roquero, E., Bardají, T., & Martínez-Graña, A. (2017). ESI-07 ShakeMaps for instrumental and historical events in the Betic Cordillera (SE Spain): An approach based on geological data and applied to seismic hazard. Quaternary International, 451, 185–208. https://doi.org/10.1016/j.quaint.2016.10.020

Silva, P.G., Goy, J. L., Somoza, L., Zazo, C., & Bardají, T. (1993). Landscape response to strike-slip faulting linked to collisional settings: Quaternary tectonics and basin formation in the Eastern Betics, southeastern Spain. Tectonophysics, 224(4), 289–303. https://doi.org/10.1016/0040-1951(93)90034-h

Stein, R. S. (1999). The role of stress transfer in earthquake occurrence. Nature, 402(6762), 605–609. https://doi.org/10.1038/45144

Stein, R. S. (2003). Earthquake Conversations. Scientific American, 288(1), 72–79. https://doi.org/10.1038/scientificamerican0103-72

Stirling, M., Rhoades, D., & Berryman, K. (2002). Comparison of Earthquake Scaling Relations Derived from Data of the Instrumental and Preinstrumental Era. Bulletin of the Seismological Society of America, 92(2), 812–830. https://doi.org/10.1785/0120000221

Stirling, M. W., Litchfield, N. J., Villamor, P., Dissen, R. J., Nicol, A., Pettinga, J., Barnes, P., Langridge, R. M., Little, T., Barrell, D. J., Mountjoy, J., Ries, W. F., Rowland, J., Fenton, C., Hamling, I., Asher, C., Barrier, A., Benson, A., Bischoff, A., & Zinke, R. (2017). The M(w)7.8 2016 Kaikoura earthquake: sufrace fault rupture and seismic hazard context. Bulletin of the New Zealand Society for Earthquake Engineering, 50(2), 73–84.

Teves-Costa, P., & Batlló, J. (2010). The 23 April 1909 Benavente earthquake (Portugal): macroseismic field revision. Journal of Seismology, 15(1), 59–70. https://doi.org/10.1007/s10950-010-9207-6

Toda, S., Stein, R. S., Sevilgen, V., & Lin, J. (2011). Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching-user guide. In Open-File Report. US Geological Survey. https://doi.org/10.3133/ofr20111060

Trifunac, M. D., & Brady, A. G. (1975). On the correlation of seismic intensity scales with the peaks of recorded strong ground motion. Bulletin of the Seismological Society of America, 65(1), 139–162.

Tselentis, G.-A., & Danciu, L. (2008). Empirical Relationships between Modified Mercalli Intensity and Engineering Ground-Motion Parameters in Greece. Bulletin of the Seismological Society of America, 98(4), 1863–1875. https://doi.org/10.1785/0120070172

Wald, D. J., Quitoriano, V., Heaton, T. H., & Kanamori, H. (1999). Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California. Earthquake Spectra, 15(3), 557–564. https://doi.org/10.1193/1.1586058

Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002. https://doi.org/10.1785/bssa0840040974

Worden, C. B., Gerstenberger, M. C., Rhoades, D. A., & Wald, D. J. (2012). Probabilistic Relationships between Ground-Motion Parameters and Modified Mercalli Intensity in California. Bulletin of the Seismological Society of America, 102(1), 204–221. https://doi.org/10.1785/0120110156

Yelles-Chaouche, A., Abacha, I., Boulahia, O., Aidi, C., Chami, A., Belheouane, A., Rahmani, S. T.-E., & Roubeche, K. (2021). The 13 July 2019 Mw 5.0 Jijel Earthquake, northern Algeria: An indicator of active deformation along the eastern Algerian margin. Journal of African Earth Sciences, 177, 104149. https://doi.org/10.1016/j.jafrearsci.2021.104149

Downloads

Published

2025-07-14

How to Cite

de Pro Díaz, Y., Martínez Díaz, J. J., & Canora Catalán, C. (2025). The 1804 Alborán seismic series: Search for the source using seismic scenarios and static stress interactions. Seismica, 4(2). https://doi.org/10.26443/seismica.v4i2.1493

Issue

Section

Articles

Funding data